
Proceedings of the 1986 Rochester Forth Conference 281

An Embedded Forth Env ironment
for a Programmable Bus Interface

Michael Pandol fo
Stratus Computer, Inc.

55 Fai rbanks Blvd.
Marlborough, MA 01752

Abstract

The Programmable StrataBus Interface (PSI) is a board that
mediates high speed data transfer between a
customer-supplied peripheral and the duplexed,
fault-tolerant bus of a Stratus computer module. Forth-83
was implemented for the PSI in order to replace the existing
resident debuggerwith a:more flexible facility. It resides
in a 64K portion of memory and runs as a separate task.

It should come as no surprise that the interactive,
extensible nature of Forth provides the PSI programmer with
more power than the precompiled debugger. Additionally,
Forth has proven to be a natural fit for the I/O
architectUre of the board. With the Forth subsystem, the
ease in which new functions can be defined has given the PSI
an ad hoc control capability; programmers can now direct
hardware functions as easily as they have controlled
software in the past.

Rational

Simply stated, the raisond'etre of the PSI is found within
its name: the StrataBus. In addition to a patented
transfer protocol, what makes the StrataBusunique is its
method of ensuring data integrity. The bus is duplexed, and
each side is checked for val idity at the clock rate of eight
megahertz. Upon detection of an error, the faul tingbus of
the pair is immediately shut.. down, and the partner bus is
used until the system determines that the cause of the fault
no longer exists. Likewise, each hardware component in a
Stratus module is actually a pair of identical boards
running in lockstep. Only if both boards simultaneously
fail will the component be unavailable. A board not
designed precisely to these data integrity requirements can
cause complete system fail ure. The PSI is provided by
Stratus to reduce this design requirement on third parties
and to eliminate the need to design for the timing of the
StrataBus.

282 The Journal of Fort Application and Research Volume 4 Number 2

Description

The PSI has two separate interfaces: one to the module i s
StrataBus and one that addresses up to four peripheral
dev ices. Each interface supports programmed I/O and DMA.
Sixteen kilobytes of high-speed RAM. serves as a transfer
buffer between the two DMA channels. The StrataBus DMA
interface can transfer up to 2 megabytes of data per second.
The PSI bus DMA allows up to 2 million transfers per second.
Programmed I/O to VOS (the Stratus V irtual Operating System)
memory is performed through a memory window under program
control. Programmed I/O to a peripheral is performed using
one of 128 PSI addressable locations.
All board functions are mediated by an on-board 68000
processor. It is possible, indeed desi rable, to have two
DMAs and one program I/O running at the same time. In its
simplest and most efficient use, the processor ini tiates
DMAs at the request of VOS or the peripheral, sets flags and
threads buffers in VOS memory, and coordinates the
arbi tration protocol for the PSI bus.

The rest of the PSI hardware complement consists of 256K
program memory, a timer circuit~ bus drivers/receivers, and
comparators. The latter implement board level error
detection: ci rcui try is dupl ica ted, and comparators
constantly monitor the signals from both sides of the board.
If any signal fails to match, the board immediately shuts
itself down and is "red-lighted," preventing any data from
leaving the failed board. Fault tolerance isprov ided by a
second PSI board that was configured and instructed to
execute in lockstep with the first: this second board
continues the processing without taking any special action.
Firmware for the PSI is downline-loaded from VOS. The
firmware is written using a standard VOSlanguage translator
(e. g., PL/I or Pascal), and is supported by a subroutine
1 ibrary which prov ides various functions such as task
management, timer services, and DMA initiation. The
firmware program may consist of from one to twenty
interruptable, prioritized tasks. The PSI is also supplied
with a debugging task that can be run without modification.

Role of Forth as a Debugger

The initial reason for implementing Forth was that the
supplied PSI debugger is relatively primitive. It has
requests for reading and writing memory and registers, for
tracing the stacks of conf igured tasks, and for managing
breakpoints. In addition, the debugger has minimal a
symbolic reference capability. In the course of programming
the PSI for timing studies, the author found that he was
frequently adding new requests. A completely new firmware

Proceedings of the 1986 Rochest~r Forth Conference 283

image was requi red to implement even the most minor change
in the behavior. of the debugger. with the addition of Forth
as a background task, new functions are now added nearly as
easily as they can be conceived, and certainly as quickly.
Debugging the board is made easier because newly found bugs
can be analyzed with equally newly created functions.

Description of Forth Implementation

Forth-83 was implemented for the PSI utilizing 64K of
program memory. It conforms to the language descr ibed by
the FORTH Standards Team, dated August, 1 983. In addition
to the Double Number Extension Word Set, it contains a PSI
Extension Word Set, described in Table l. The device layer
uses the services of vas to complete both keyboard and disk
I/O processing. Disk I/O is perform~d by requesting a read
or write of a vas file record. Terminal output is
implemented by writing a string into the VaS-resident PSI
mailbox, which is received by a VOS process. Terminal input
is similar: another location in the PSI mailbox is filled
by a VOS process and read in its entirety by a PSI task,
which feeds the individual .characters to Forth during KEY
invocation.

lABS l6b 3 2b-- Store l6b at absol ute address
~ABS 32b --16b Fetch 16b from absol ute address
C lABS 16b 32b -- Store byte at absol ute address
C ~AB S 32b -- 16b Fetch byte from absol ute address
D lABS 32b 32b -- Store 32b at absol ute address
Dl!ABS 32b -- 3 2b Fetch 32b from absol ute address
DICTIONARY-ORIG IN -- 32b Leave absol ute address

Table I.
PSI Extension Word Set

After producing a working version of the system, its size
was reduced from 64K to 32K, so that it would require
roughly as much space as the original debugger. The Forth
environment runs as. a separate task in the PSI, with a
skeleton of the or iginal debugger serv ing as the event
handler as well as the KEY interface.

Transcending the Debugger

After using Forth as a debugger for a while it became
apparent that Forth could prov ide a means to manipulate the
I/O ci rcui ts on the PSI as easily as the util i ty subroutines
did. The main characteristic of the PSI that aids in this
is that all on board devices, registers, and control bits
are memory mapped into the 68000 i S address space. Several

284 The Journal. of Fort Application and Research Volume 4 Number 2

screens of
capabil ity

words prov ide nearly all the functional
found in the conventional subroutine library.

A clear example of the advantage Forth provides can be found
in . Figures 1 and 2. Figure 1 coniparesthe steps necessary
to read vas location 0026610A, which is the start of the psi
control block. Whereas the debugger requires the programmer
to juggle registers and addresses, DUMP-VaS needs simply a
vas address and a byte count. Figure 2 displays the Forth
code used for the example. Especially important is the
ability to debug and change (Forth) code completely
interactively: in this way, the board i s DMA, Pia, and VOS
window circuitry areimmèdiately available for manipulation,
just as the switches on an older style processor were. When
implementing a new peripheral for the PSi, the interface to
the new device can bè dynèmically configured and tested.
PSi Forth has been changed from a software debugging tool to
a rapid prototyping aid.

set. w FFFF8006 266
dump lC010A 20
lCOlOA 00010304 01000400 00008000 00000000
lCOllA 0021E41A 0021EOOO 00030000 00008000

0026 610A 20 DUMP-VaS
oolc OlOA 0001 0304 0100 0400 0000 8000 0000 0000
OOlCOIIA 0021 E41A 0021 EOOO 0003 0000 0000 8000

scr#
o
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

Figure 1.
Reading V OS Memory

15
WORDS TO READ vas MEMORY 86-03-24 MAP)

HEX
o S)D 2CONSTANT RAM
o lC 2CONSTANT WINDOW
8006 S)D 2CONSTANT WBR

(RAM START: 00000000)
(.. INTO VOSPAGE: OOlCOOOO
(WINDOW BASE REG: FFFF8006

SET-WBR
C ODO 2/ LOOP F AND
&WAP 10 * + WBR lABS i

HIG H LOO _..)

DU MP-V OS
)R
DUP FFF AND)R
SET-WBR WINDOW

(HIG H LOO COUNT --)
(SAV E COUNT)
(SAV E OFFSET)

R) S)D D+ R) DUMP i

Figure 2.
Screen for Reading vas Memory

