
Proceedings of the 1986 Rochestet Forth Conference 285

..
""

~

Design of a fast 68000-based subroutine threaded
FORTH with ¡nUne code & an optimiser. .

Anthony Rose
A.R. Technology

68aSanoown Roa
Rondebosch 7700

Cape Town South Afca
Ph. (021) 652184

An examination of several 6800-based FORTH implementations (direct, indiect, token,
subroutine threading) showed that. up to half the CPU time is spent executing NEXT,
DOOL or other chaining words. Processors such as the 6800 have complex instruction
sets which allow the coding of many FORTH primitives in few bytes, sometimes fewer than
the alternative JSR to them. ART-FORTH is a full 32-bit subroutine-theaded FORTH
which, by compiling words shorter than a dynamically alterable size inline, increases
execution speed, as shown below.

Machine FORTH Sieve time #NEXTs NEXT-time Fraction of time threading
Macintosh MacFORTH 3480ms 203682 1430ms 41%
HP9816 MultiFORTH 2330ms 203682 1020ms 44%
HP9816 ART-FORTH

unoptimised 1050ms 2 10J. -:1%
optimised 820ms 2 10J. -:1%

#NEXTs is the number of times NEXT was called during execution of the Sieve. NEXT-time is the
time spent executing NEXT and the calls to it.

Since the Sieve uses only primitives, no calls to OOCOL are performed. As more colon
definitions and DOCOLs are -encountered, the proportion of the time spent threading
increases and hence the efficiency decreases. ART-FORTH attempts to reduce this thading
overhead by coding short words inline, bypassing NEXT.

A summ of some of the ideas implemented in ART-FORTH follows.

Obiect code structure

The object code consists of machine code followed by a RTS. Since there ar no identifying

CFAs, it is essential that any status information be kept with the names, which ar store in a
separte vocabular strctt.

The first 64k of object is relocatable. All addresses are referenced relative to a base pointer,
BP. Apar from makng the kernel relocatable, this facilitates 4 byte address referencing
(including the opcode) rather than 6 bytes using 32-bit absolute addressing. Since the 6800
provides only 16-bit signed offsets, BP is set 32k into the object strcture, allowing a full
64k of relocatable code. When this limt has been reached, the word-building routines revert
to 32-bitabsolute addressing. In practice, this appears to increase code size by about 15%,
since most references are stil to kernel primitives, which, being in the first 64k, take
short-form addressing.

'nline ComDilation

A subroutine-threaded system forms high level words by compilng a list of JSRs to
pritives or to other high-level words. In ART -FORTH, the compiler contiually compares

the length of the word being compiled with the varable CRCAL.SIZ. If the word length
is less than the critical s~ze, the body of code comprising it, minus the termnating RTS, is

286 The Journal of Forth Application and Research Volume 4 Number 2,

added to the curent definition, rather than a JSR. A critical size value of 13 has proven a
good compromise between speed and code size. The Sieve benchmark times var from

1500ms using a CRITICAL.SIZE value of zero (giving a straight subroutine-threaded
system), to 1050ms using a CRIICAL. SIZ value of 13 (giving completely inine code). In
the case of the Sieve, changing from subroutine calls to inline code had little effect on code
size: 166 bytes unoptimised, 144 bytes optimised (with CRICAL.SIZ=13), versus 154
bytes on MultiFORTI and 82 bytes on MacFORTH

CONSTANs, lie many other other words, cannot be modified once compiled, as the data
appears within the code and is typically coded inline. Q- V ARs have been implemented to
cater for varable constats.

There are some words which cannot be compiled inline, and others which must be. Unlike
an address-theaded system where nesting occurs only on DOCOL, subroutine threading
results in calls to primitives, as well as to other high-level words, leaving return addresses on
the return stack. All words which reference return stack parameters left by other words (such
as ::R, R::, RP) must be coded inline. To facilitate this, the name field contans two bits
which, when set, cause the compiler to opt for either subroutine or inline code. The words
SUBR and ININ ar used like IMDIATE, and set the appropriate names-field bits of
the latest definition. Words which must be called as subroutines are those with multiple exit
points or those which must leaveän indication of their data address, such as words created
using BUILDS-DOES:: or those followed by data, such as dot-quote. Words ar therefore
compiled as subroutine calls unless: ((word.size.cCRITICAL.SIZE)AND(word does not
have SUBR bit set)) OR(word has ININ bit set).

Vocabularv Structure

Since a word consists solely of machine code with no identifying CF A, al information about
the word must be kept in the separte names field. In ART-FORTI the names field contans
severa status bits in addition to the standad preedence and smudge entres.

2 bytes:
1 byte:
3 bytes:

1 byte:

1 byte:

1 byte:

n bytes:

relative offsetto next nfa in hashed chain
length of object code in 16-bit words, max 255
address of object code relative to BP
07-06 = SUBR & INLlNE compiler directives
00-04 = word type: code/colon/variable/constant, etc
07 = precedence bit
03-05 = # stack words required on entry
00-02 = # stackworcl left on exit
05-07 = vocabulary# (0-7), O=FORTH, 1= TRANSIENT, atc
00-04 = name count (0-31)
variable length name, terminating on an even address

Two sets of information are maintained for user convenience. VLIST uses the word type
field, assigned by a defining word, to display the word type. CREATE resets the word type
field to zero, which is displayed as type DATA. Any defining word can then alter the word
type bits. For example, CONSTANT sets the field to 3 and VARIABLE to 4. New defining
words add their types to the display list with ADD.TYE(eg:" Q-V AR" ADD.TYE).

The stack entr and exit fields conta the number of stak items which are taen by the word
on entr and left on exit. These are displayed by VLIST. INTERPRET also uses this
information to flag an error if there are insuffcient items on the stack prior to executing a
word.

The definition of left-bracket has been changed to scan comments of the form (aI/c -- x/y/z I
remaks) and examnes the stack usage. The default stack usage is set to (0--1) by CRATE,

Proceedings of the 1986 Rochester Forth Conference 287

and this applies to most word types, such as CONSTAN, VARBLE, etc. Colon (:) sets it
to (?-- ?) so that any words without stak usage comments have question maks in their usage
field when VLISTed

In ART-FORTI, multiple vocabulares exist within a single vocabular strcture. The
advantage of this is that only one set of vocabular headers is needed (names entres are
accessed via a 16-bit offset from each of 256 hashed links, so this header would require 512
bytes per vocabular). In addition, there are now only two dynamic strctures - object and
names, which siinplifies heap manàgement over approaches where each vocabular is a
separte heap item. To facilitate this while providing multiple vocabulares at the user level, a
vocabular numberform par of each name entr. New definitions simply have the contents
of CUNT placed in this field, and vocabulares store their own number into CONTEXT
(the definition of FORTI is 0 CONTEXT !). The function of CONTXT and CURNT
has therefore shifted from holding a pointer to the first item in a vocabular to holding the
vocabular number.

The vocabular number is stored in the same byte asthe name count, on an even address
boundar. Before FIND is called, the contents of CONTEXT are similarly added to the
search string's count byte. FIND can then rapidly traverse a hash chain, matching only
entries with the same contents & vocabular number as the search string. Hashins is
performed by summng all bytes of the search strng mod 256, including the count.byte and
associated vocab number. This gives an even distribution of entries per hash link,
independent of the vocabular or name length. The ART-FORTI kernel with extensions
contains about 100 definitions; the longest hash chain contas 13 entres.

TheOptimiser

At the machine code level, stack usage produces inefficient code. For instace the sequence
OVE (j + prouces the following code:

Before optimising
MOVE.L 4(SP).-(SP)
MOVE.L(SP)+,AO
MOVE.L (AO),-(SP)
MOVE.L (SP)+,DO
ADD.L DO,(SP)

(+)

After optimisino
MOVE.L 4(SP),AO

MOVE.L (AO),DO

ADD.L DO,SP

(OVER)
((g)

Note the. superfuous push and pop connecting OVER to (j,and (g to +. This ineffciency is
normally disguised, as the colon definitions contan calls to the primitives rather than inline
code. In ART-FORTI a peephole optimiser scans previously compiled colon definitions (at
the rate of over one kbyte/second) and removes this and other interface reundacy, reucing
code size by about 10-15% and execution tie by 20-30%.

The resulting machine code is a factor of two to thee slower than the equivalent code wrtten
in assembler, due mainly to the use of the stack rather than registers. Typically, 70-80% of
the opcodes ar MOVE instrctions, most of which operate on the stack. An extension of the

optimiser is planned that wil defer stack operations, keeping operands in registers where
possible and restoring them to the stack before a branch or JSR instrction. Ths optisation
would tae place trsparntly either durng or after compilation, as is done at present

The compiler

Compiler operation is similar to that in a standard FORTI implementation, except that
instead of appending the address of the word being compiled onto the dictionar ,either a
JSR to the word or the code comprising the word is added. Despite the overhead incur by
the conditional inline cod, compilation is at the rate of over twenty screens pe second (from

288 The Journal of Fort Application and Research Volume 4 Number 2

blocks in RA). This rate is achieved by the compiler having itself been compiled to
machine code, as well as by tuning of time-critical words in the compile chain. The use of
hash lins, restrcturng of WORD and ENCLOSE, and a BLOCK which returns a value
fast (without searhing the block buffers) if the block number has not changed since the last
BLOCK, reuce the text and vocabular searçh time.

MetacomDilation

Subroutine theading ()bviates the need for run-time code such as DOCOL, DOCONST and
the ubiquitous. NEXT. Consequently, if the kernel can be strctured such that few or no

forward references exist, then metacompilation is simplified. In ART~FORTH the kernel has
been ordered so that only one forward reference, QUIT, exists (apar from I/O, which is
vectored anyway). Regenerati()n (metacompiling using a simiar kernel as a host) of a kernel
then consists of creating a new vocabular heap area followed by successive loads of source
screens. Since the new kernel is relocatable, it can be loaded on top of the old kernel with
appropriate adjustments to BP.

A standard FORTH hosted ART-FORTH during development. The large differences in
vocabular and object Rode format prevented the simple loading of the new kernel on top the
the host possible when both are similar (as in kernel regeneration). The loading of selected
source code screens into the host system provides the compatibilty bridge: definitions then
exist which execute on the host but perform the functions required by the new kerneL. This is
must be done with care to ensure that new defining words are not inadvertently invoked (by
for instace creating a new CONSTAN after CONSTAN has been redefined).

After the new defining words have been loaded and can execute on the host, a new
vocabular ara is create and initialised and the pritives for the new kernel are assembled,

followed by compilation of colon definitions up to QUIT, at which point the new kernel is
invoked and allowed to extend itself.

Conclusion

This necessary limited aricle highlights some of the features incorprated in a FORTH
implementation which trdes code size for speed. High-level compatibilty is retaned despite
the low-level differences between this and stadad address-thaded versions. Applications
are easily port between ART-FORTH and other implementations.

ART-FORTH has been developed for a parallel-processing machine, using multiple
6800/68020 processors,currently being developed by A.R.Technology. The ART-l is to
be aloosely-coupled.multiprocessor machine with an initial sixteen CPU's linked in a grid
aray. Each processor board contans four high-speed parallel links (12mbytes/sec on 6800
boards, 20mbytes/sec on 68020 boards) to its northlsouthleasUwestneighbours. Resources
such as video displays and mass storage are distrbuted throughout the system, with each

resource typically being connected to one CPU board and accessed by other boards via the
data lins. A processor-contrlled memory access system (analogous to a DMA system) has

been designed to allow simultaeous data transfers to any combinations of data links and
memory. For instace, a board could receive a data packet from a neighbour to the south
while simultaeously. broadcasting it to the nort, east and west neighbours and wrting it to
on-board RA.

The high volume of data being transferred requires fast machine-code routines; the large
amount of code comprising these routines warrants a high-level implementation.
ART-FORTH satisfies these requirements by facilitating the writing of code in high level
with performance within a factor of 2-3 of the equiv¿i1ent code written in assembler.

Multitasking under interrpt control rather than the typical PAUSE. round-robin system is
also then feasible.

