
Proceedings ofthe 1986 Rochester Forth Conference 155

ACTOR ,A Threaded Ob jec t-Or i ented Language

Char les 8. Duff
The Whitewater Group
906 Universi tyPl ace

Techno logy I nnovat ion Center
Evanston, IL. 60201

(312) 491-2370

Ob jec t-or i ented programmi ng, in wh ich ob jects encapsul ate
private data and respond to generic messages, has become
iricreasingly popular in the last several years. OOP is
particularly effective when implemented as a consistent
programming environment in the manner of Smalltalk.

This paper describes a new language, ACTOR, that attempts to
address the central prob lem of ob jec t-or iented 1 anguage
design: achieving a practical, efficient language without
compromising the integrity of the runtime environment.
ACTOR uses a token-threaded interpreter as an eff i t iency
measure, permitting a more flexible optimization strategy.
Whi le other 'researchers have suggested threading as an
optimization technique (Deutsch83J, to the author's
knowl edge, no 0 ther pure threaded OOLs have been
implemented.

Thread i ng
Actor's token~threading model integrates the. object table of
Smalltalk with the token table of threaded languages. The
result is that all objects are separately relo¿atable and
have executable behavior, unlike Smalltalk, in which objects
are "dead" entities that rely on the bytecode interpreter to
give them life. Each ACTOR object has a family code
embedded in its object table entry that describes its
executable behavior. Most objects simply place their object
pointer on the stack.
Syntax
Unl i ke the author's prev iousthreaded DOL, Neon, ACTOR uses
an Algol-like infix syntax. There is a tremendous amount of
resistance in the world at large to RPN syntax, justified or
not. More importantly, it is impossible for the compiler to
protect the runtime environment using RPN, because the state
of the stack cannot be accurately predicted or controlled.
This would cause an unacceptable breach in the safety of the
system, which is directly at odds ~ith object-oriented
philosophy. Neon is also a hybrid DOL, in that not all
entities are treated as objects (for instance, numbers).

In the development of ACTOR, the author did employ an RPN
object-oriented language as a bootstrapping mechanism. Only
the stack operations DUP and DROP were provided in addition

The Journal of Forth Application and Research Volume 4 Number 2156

to a local
in its own
Forth-l ike
above.

variable facility. This language was successful
right, and demonstrated the feasibility of a
pure DOL, al though wi th the caveat ment ioned

ACTOR's infix parser is a state machine driven by tables
generated with the Unix utility yacc. The parser is
described by a class, permitting easy parsing of custom
grammars by the user. Yacc output must be transl iterated
into ACTOR array literals using a text-processor. These
arrays are then used to initialize a descendant of class
LR1, generating a custom parser.

Efficiency Considerations ,
Because ACTOR was designed with real-time AI development in
mind, an effic ient and non-obtrusive garbage collector was
considered mandatory. ACTOR uses a modification of the
Baker/Lieberman/Hewitt scavenging collectors, incorporating
sensitivity to object lifetimes. ACTOR is thus able to
perform incremental garbage collection with no lengthy
pauses to disrupt time-sensitive code.

The central opt imi zat ion strategy that ACTOR provides
involves an optional typing mechanism. The programmer can
assign types (class names) to variables and functions,
allowing the compiler to perform early function binding in
some cases. For instance, in the following declaration,

Def copyFrom(self, startIdx:Int, endIdx:Int)

the arguments startIdx and endIdx are stated to be of class
Int. The compiler must then ensure that any early~bound
calls to copyFrom pass arguments of class Int. Giventhis
assurance, any messages to these two arguments wi th i n
copyFrom can potentially be ear ly-bound. Even with method
cach ing, ear ly bind i ng produces a performance increase of
five to ten times in a particular call.

Because late binding is so desirable from a maintenance and
debugging standpoint, the programmer can use exclusive late
binding until the application is debugged. Selected
variables c~n then be typed based on profiling information
that ACTOR provides. The most heavily used functions can be
ear 1 y bound, unt i 1 performance is accep tab le. As a f i na 1
measure, functions can be implemented as primitives in
assembler or one of the Microsoft high-level language~.

Development Environment
Like Smalltalk, ACTOR provides a very rich set of
development tools for the programmer. A browser allows one
to peruse the class tree, and shows the functions defined
for each class with their arguments. If a function is
selected, the text for the function is pretty-printed into
an edit window so it can be read or modified. A menu

Proceedings of the 1986 Rochester Fort Conference 157

provides formatted templates for all of the control
structures. Since functions are compi led one at a time, the
parser c~n provide immediate and accurate feedback on synta~

, errors.

If an error occurs at runtime, a dialog is shown in which
the function activations that led up to the error are
presented. A given activation can be converted into an
object and inspected via the Inspector, described below.
This allows examination of local variable values in any
function activation prior to the error.

A trace facility allows single~stepping through code. Each
funct ion can have an attached error handler that is
consulted if an error occurs. The handler can selectively
clear the error flag for errors that it wishes to handle.
Possible actions including interaction with the user via a
dialog, resuming, aborting to the caller, aborting to
ACTOR's interpreter, or fatal abort.

The inspector is a tool that presents a graphical, window~
based interface to the programmer. The inspector lists the
private variables belonging to its target object in a list
box. If a variable is selected with the mouse, its contents
are formatted into an edit window. Collections list their
keys or indices in another list box, subject to the same
manipulation. Objects that have special printing behavior,
such as graph ics ob jec ts, can be asked to show thei r
contents in a special display window.

Because ACTOR's object-oriented environment is so highly
organized, the programmer can learn a lot by simply
interacting with objects in the Workspace window. For
instance, the following message shows the programmer the
private variables in class TextWind:

Tex tw i nd. var i ab I es

The variable names are stored in a dictionary, which knows
how to print itself when sent a sysPrint message by the
interpreter. The message TextWind.methods would show the
methods available to a T~xtWind object.

Artificial Intelligence
OOLs are generally a very good starting point for doing AI
work. Interestingly, most of the major Lisp systems that
are being used for AI have object-oriènted extensions (e.g.,
Loops, Flavors, Scheme, KEEl. OOP is an ideal approach for
prob lems invo I v ing comp lèx data structures that must grow
organically.
Other facilities are very helpful in doing any kind of AI
work (Carr86J. Figure i shows an implementation of Carr's
symbol manipulation example in ACTOR. The principal

158 The Journal of Fort Applicationand Research Volume 4 Nltmber 2

difference between ACTOR and Lisp in this example is ACTOR's
use of arrays for stor ingthe expressions instead of 1 i sts.
ACTOR also has a List class, but arrays provided a more
transparent representation in this case. In general, an OOL
provides a rich variety. of representation options, within a
consistent framework.

We are currently developing a frame-based knowledge
representation system with in ACTOR that exp 10 i ts the full
power of objects. This will allow integration of a
knowledge base with a more conventional procedural
application, without having to shift paradigms. It is our
expectation that ACTOR's efficiency and incremental garbage
collection will make it an excellent choice for real-time AI
applications.
C. Mellish, one of the authors of the definitive book on
Prolog, has stated that logic programming is ,a poor choice
for many real-world problems, such as writing text editors
and other naturally procedural applications (Mellish84J. He
suggests that instead of trying to bui Id a complete l.nguage
around logic programming, it should be integrated as a
facility into a language with procedural features. The host
language can control backtracking, modify rules, and provide
procedura 1 imp lementat ions of the si de-effec ts that are so
essential for real applications.

We are examining the desirability of a logic-programming
facility within ACTOR. Providing the facility is not
difficult, but correct integration is a significant
cha llenge. (Tokor084J descr ibes one approach to, log ic
programming within Smalltalk.

OOP and For th
Working in an object-oriented language can at first be a
startling experience, because everything is so highly
organized. The process of developing an applicatianis
channeled and made more comprehensible by class inheritance.
The burden on the programmer is great 1 y reduced, because
information is localized in the classes and objects
themselves. As in Forth, there is a continuum between the
"system" and the application; .the working environment of an
OOL, however, is much more sophisticated because of the
consistent application of the object philosophy.

Forth is seriously limited by its lack of a sophisticated,
structured and consistent data definition facility.
CREATE/DOES is not adequate, yet it is the only standardized
means of defining data (Duff84J. It does not support nested
or composite structures, and can only associate a single
behavior with a data structure. A common response from
Forth programmers when presented wi thcr it ic isms such as
these is, "I can do that in Forth, and here's some code that

Proceedings of the 1986 Rochester Fort'Conference 159

proves it". (Carr86J raises some issues that are sure to
provoke such a response from Forth hackers.

Yet, this response misses the point of these and other
constructive criti¿isms. The issue is not one of power -
Forth is certainly a very powerful and flexible language.
Many researchers have concluded that the "extensible
language" movement has been a failure, with the notable
exception of Lisp. Lisp has been ab le to ~ro~ organically
and channel its growth into new standards. Common Lisp,
while far from ideal, was able to integrat~ many of the
extensions that had prol iferated into a standard, and
perhaps rescue Lisp from a chaotic decline.
The Forth community must recognize that raw power is not
always terribly desirable, particularly when many
programmers need to exchange code. The Tower of Babel is a
very dangerous scenar i 0, but i nev i fable when every shop has
its own way of defining extensions. Unless Forth is able ,to
identify some of the most essential extensions and
incorporate them into a standard, it is the author's opinion
that any hope of general acceptance in commercial
environments will be lost. Object-oriented techniques could
provide a model for a more advanced data structuring
facility within Forth.

The Journal of Forth Application and Research Volume 4 Number 2160

Bibl iography
Borning, A. and Ingalls, D., "A Type Declaration and
Inference Mechanism for Smalltalk". In Proc. 9th Annual
Principles of Programming Languages Symposium, ACM, 1982.

(Carr86J Carr, H., "Forth for AI?", Proceedings 1986
Rochester Forth Conference.

(Deutsch83J Deutsch, P. and Schiffman, A., "Efficient
Implementation of the Smalltalk-80 System", in In Proc.
10th Annual Principles of Programming Languages Symposium,
ACM, 1983.

(Duff84J Duff, C. and Iverson, N., "Forth Meets Smalltalk".
JFAR Vo 1. 2 #2.

(Mellish84J Mellish, C. and Hardy, S., "Integrating Prolog
in the POPLOG Environment". In "Implementations of Prolog",
J. Campbell, Ed. Wiley,1984.
(Tokoru84J Tokoru, M. and Ishikawa, Y., "An Object-Oriented
Approach to Knowledge Systems". ICOT Proceedings, 1984.

Proceedings of the 1986 Rochester Forth Conference 161

1* symbol ic differentiation example ref Carr 1986 Rochester paper *1 II
1*

C.B.Duff 7.12.86
(c) Copyright, 1986
The Whi tewater Group
Technology Innovation Center
906 University Place
Evanston, IL. 60201 (312) 491-237Ø *1

1* Modification history:
7.12.86 cbd

*1

1* Conditional logic for the various object types is incorporated
into the distinction between statements, rather than requiring
explicit conditionals as it does in Lisp *1

1* derivative of an Int is ø *1
Compiler.curClass := Int;ll

Def deriv(self, var)
("'0) LL

Compiler.curClass := Object;! L

Def deriv(self, var)
(if self == var

then '" 1
el se "'ø
end if;

) L !

1* composi te expressions are stored in array ob jects. Elements
o and 2 are operands, and element 1 is the operator *1

Compiler.curClass := Array; LL

Def deriv(self, var : exp)
(ex p : = se 1 f ;

if exp(1J == #+ or exp(1J == #-
then "'triple(deriv(exp(0J,var), exp(1J, deriv(exp(2J,var));
end if;

if exp (1 J == #*
then "'triple(triple(exp(0J, #*, deriv(exp(2J,var)), #+,

triple(exp(2J, #*, deriv(exp(0J,var)));
end if;

) L !

1* Sample output:

der i v (# (100 * 3), #x)
100 * 0 + 3 * 0

der i v (# (10 * x), #x)
10 * 1 + x * 0

*1

