Proceedings of the 1986 Rochester Forth Conference ' , 291

Compiling Forth for Performance
Thomas Almy

Tektronix, Inc.

Conventional Forth environments use threaded code interpretation
techniques. While this makes compilation fast, and keeps the
compiler size extremely small, the execution performance tends to
be five to ten times slower than that obtainable with compiled
languages. Subroutine threaded code, combined with more
intelligent compiling words can increase performance markedly on
some systems, and several companies sell code optimizers which
turn colon definitions into code words either by copying
primitives to make inline code or by more sophisticated
techniques.

The author has for over a year been compiling complete Forth
applications directly into machine code on 8086 and 2Z-80 based
systems. Of course, the compiler is written in Forth!

By compiling the complete application, many code optimizations

are possible that are not available to mixed systems. For
instance, no memory space is allocated for constants, and colon
definitions become machine language subroutines. Compiled

programs run faster than equivalent programs compiled in C or
Pascal, yet have the same code compactness of conventional Forth.
Additionally, the compiler compilers faster than most C or Pascal
compilers. Performance on an IBM/PC was measured to be roughly
0.25 MOPS (using the sieve benchmark), or about 19 clock cycles
per Forth primitive.

The paper will discuss the user interface and implementation
concepts a Forth compiler, and will give examples of some
possible optimizations that can be performed.



