
J

Proceedings of the 1986 Rochester Forth Conference 297

A Prototype Expert System in OPSS
for Data Error Detection (1)

James Rash
NASA Goddard Space FI ight Center

Telecommunication Systems Branch, Code S31
Greenbelt, Maryland

ABSTRACT

A prototype expert system has been developed in the OPS5
language to perform errör checking on data which spacecraft
builders/users supply to the NASA Goddard Space F'light
Center for processing on the Communications Link Analysis
and Simulation System (CLASS) computer. This prototype
expert system, called Trajectory Preprocessing System
(TRAPS), . contains 49 . rules and at present runs on an IBM PC
in the OPSS+ software package from Artelligence, Inc. In
its operational phase, TRAPS will run in the Oak Ridge
Production Language (ORPL) on the CLASS computer (a Perkin-
Elmer 3244 supermini). ORPL, an implementation of OPS5 by
the Oak Ridge National Laboratory in MULTIFORTH on a
Hewlett-Packard 9836 desktop computer, is now being ported
to SS-FORTH on the CLASS computer. This paper discusses the
expert system problem domain, development approach, tools,
results and future plans stemming from the TRAPsproj ect.

CLASS comprises several major software systems (written
in FORTRAN) designed to analyze space and ground
communications system performance. CLASS .was developed by
NASA primarily for the prediction of user spacecraft
communications system performance through the Tracking and
Data Relay Satellite System (TDRSS) (the term "user
spacecraft" or "user vehicle" is used to refer to a
spacecraft which is utilizing services provided by TDRSS),

The basic functions facilitat~d by CLASS are: (1)
communications system design, (2) communications system
performance analysis, evaluation, and prediction, (3)
spacecraft mission planning , and (4) post-launch trouble
shooting of communications problems,

The CLASS computer, located at NASA's Goddard Space
Flight Cent er (GSFC). in Greenbelt, Maryland, is a Perkin-
Elmer 3244 supermini with 16 megabytes of RA, serving up to
32 simultaneous users locally or in distant cities.

A number of areas exist in CLASS for the application of
expert systems: communications i ink fault diagnosis,
communications system design, communications scenario

(1) Extracted from a paper presented at the 1986 Conference
on AI Applications, NASA Goddard Space Flight çenter, May
IS, 1986.



298 The Journal of Forth Application and Research Volume 4 Number 2

optimization, and checking input data for certain kinds of
errors. A prototype expert system for checking user-
supplied input data for errors will be the focus of this
paper.

It should be noted that the term "expert system" is
used somewhat loosely in this paper to mean any rule-based
system whether "expert" or not,

The basic constraints on the selection of expert system
software for CLASS required that delivered applications be
imbedded (or embeddable) within the CLASS environment,
interface efficiently with existing CLASS programs, and run
in a multiple-user mode. An additional consideration was
tha t 0 f a i imi ted budget,

Various al ternative approaches for expert system
development, such as the acquisition of premium hardware and
software systems (e.g., Symbolics and ART), or thecontracted porting of some existing product (e,g.,
Rulemaster or KES 11) to CLASS, were rejected as either
technically unsuitable for the CLASS environment or too
costly in time or money . It was finally decided to u.se the
OPS5 language. Initially, OPS5+ from Artelligence, Inc.was to be used as a start-up tool on the IBM PC. In
parallel, OPS5 was to be implemented on the CLASS mainframe
by porting the Oak Ridge Production Language (ORPL) l
originally implemented in MultiForth on a Rewlett-Packard
9836, to SS-FORTRon CLASS.

Following consideration of several possible
appl ications of expert systems for CLASS , it was decided
that an expert system to preprocess user traj ectory data
would be constructed. This was a simple, straightforward
problem which could be solved using either OPS5 or FORTRAN,
thus permitting a comparison of the OPS5 language with
FORTRAN. The main factor to be compared was program
maintainability, where OPS5 was projected to provide a
significant advantage, program maintainability appeared to
be particularly important in this problem domain because of
the many possible variations in mission and spacecraft data
requirements, which would make necessary the development and
maintenance of many code modules,

CLASS analysis of a typical planetary mission may
involve processing several hundred possible trajectories as
specified by the CLASS user. Each trajectory will have 150
to 250 time points starting at the time of release of the
user vehicle from the Space Shuttle and ending at the time
communications with TDRSS are lost following the completion
of the user vehicle's engine burn phase, Perhaps 2 to 3
hours total ground elapsed time is covered by the analysis
for each such traj ectory .

Analyses for orbital missions arè essentially the same
but may involve much longer mission time periods as well as
special factors such as earth occultation and interference
from earth mul tipath reflections,

CLASS users furnish input data in a standard format on
magnetic tape. The input data must satisfy a number of
specific rules. Some of these rules are mission-unique, and



Proceedings of the 1986 Rochester Forth Conference 299

the rest are generic. However, in all cases the rules
("human rules") are derived from the logic of space
communications rather than from the internal requirements of
CLASS programs.

Preprocessing the user-supplied input data to determine
whether it conforms to these "human rules" is the function
of the Trajectory Preprocessing System (TRAPS), an expert
system designed to protect CLASS from bad input by (1)
recognizing bad data before the start of processing by the
analysis and simulation programs, and (2) reporting the data
errors to the CLASS analysts,

Each of the six initial requirements ("human rules") on
which the TRAPS expert system prototype was based was
translated into from one to eight OPS5 rules for processing
the data records, plus from one to five additional OPS5
rules for generating the TRAPS output messages . with the
rules for initialization and for reading the input data, the
total number of QPS5 rules in the TRAPS prototype is 49,

At the present time, the expert system produces
messages indicating any errors found. TRAPS does not (yet)
have the capability of correcting or modifying the input
data in any way,

The first version of TRAPS (based on only five of the
human rules) read in all records from the input file before
the data-checking rules in the knowledge baseweré allowed
to beginfiring~ This version was very inefficient because
as the number of data records increased, the size of OPS5
working memory rapidly increased and the processing speed
rapidly decreased.

The second version of TRAPS (also based on only five of
the human rules) used a record-by-record processing approach
in which each record was processed against the data-checking
rules before the next record was read. This record-by-
record processing minimized the number of OPS5 working
memory elements regardless of the number of records to be
processed. This second version of TRAPS processed records
approximately 14 times faster than the first, but had some
ina,dequacies.

The third version of TRAPS was derived from the second
version by adding a module of OPS5 rules corresponding to
one additional human rule and by revising some of the rules
to improve readability and to handle special cases, These
enhancements caused the third version to run somewhat slower
than the second version.

The following table summarizes the processing
efficiency of the three versions on the IBM PC , based on
processing a data file containing 163 data records using
OPS5+ Version 2, oooa. The values for processing speed are
not highly significant since they are data dependent and
sensitive to the structuring of the condition elements
within the rules.

An important feature of OPS5 code is that literals
(corresponding to variable names in other languages) can
have virtually any length. This feature of OPS5 was
utilized to satisfy the requirement that the code for TRAPS



300 The Journal of Forth Applicatian and Research Volume 4 Number 2

TRAPS Processing Efficiency
- - - - - - - - - - - - - - - - - - -~ -- - - - - - - - - - - - - - - - - - - - - - - - - - - ~- - - - -- -- - - --
I version I No. of 'I No ,of I Processing Speed I
I I Rules I Rule I --------------------------------
I I I Firings I Records/second I Rules/second I
- - - - - - - - - - - - - --- - - - - - - - - - - - ~- ~ - - - - - - - - - - - -~ -- ~ - - - - - - - ---- - - - I
I 1 I 41 I 397 I 0.11. I 0,26 II 2 I 40 I 849 I 1. 6 I 8.1 II 3 I 49 I 862 I 1. 3 I 6.8 I- - - - - - - - - - - - - - - -- - - - -- - - - - - - -- -- - - - - - - - - - - -- - - - - - - - - - - -- - - - --. .
be easily maintained by being easily read.

Future enhanced versions of TRAPS can be develöped
readily by simply including one or more additional code
modules derived from new human rules, The ability of OPS5
to accommodate this modular approach fUrther ensures
maintainabili ty,

To facilitate the goal of comparing OPS5and FORTRAN, a
FORTRAN program was written to perform the functions of the
original five human rules. A comparison of this FORTRAN
subroutine with the equivalent OPS5 code written for TRAPS
shows that OPS5 can be made more readable than FORTRAN, as
has been noted by others. This comparison also suggests
that OPSS is more terse than FORTRA. However, this is
often not the case since a number of functions, especially
input/output functions and general numerical computations,
are cumbersome in OPSS, The FORTRAN code developed for the
TRAPS application was about 30% shorter than the OPSS code
because lengthy literals were deliberately used in the OPS5
program to enhance readability~

Based on the experience of developing three different
versions of this prototype expert system as well as a more
or less equivalent FORTRAN program, it is the author's
opinion that OPSS offers a considerably higher degree of
maintainability than does FORTRAN.

However, it should be stated that developing OPSS
programs is not without pitfalls. Subtle interactions can
occur between the rules in a production system program
during interpretation by the inference engine. These
interactions can be difficult to predict and tricky to
debug. Thus ,programming in OPSS requires carefulness and
skill, perhaps beyond that required for procedural languages
such as FORTRAN.

From the TRAPS development effort, the development tool
(OPSS+) received a positive evaluation overall. It was
found to be an effective and essentially bug-free product
wi th a favorable price-performance ratio.

The process of porting the ORPL (OPS5) package
(developed by Oak Ridge National Laboratory), to SS-FORTH
(developed by Sun Studs, Inc, of Roseburg, Oregon) on the
CLASS mainframe is under way. After ORPL has been ported
and validated, future efförts are expected to divide into
two areas: (1) other CLASS expert system applications, and
(2) enhancements to ORPL.


