
Proceedings of the 1986 Röchester Forth Conference 317

A Large (10,000 sensor) Fire and Gas Safety

System implemented using polyFORTH and

Exec u t ion Queues

R M Rodriguez and C L Stephens

COMPUTER SOLUTIONS LIMITED
Massillon Building No 2, Canada Road,

Byfleet, Surrey, England

A polyFORTH system has been designed that holds details of
a large number of sensors in a database, Outstations using
triplicated 6809s monitor these sensors and take shutdown
actions if required reporting sensor status changes to a
pair of VME 68000 based computers, one of which acts as a
warm standby. The 68000 systems are responsible for
processing these reports to prnduce operator displays,
printed logs and to maintain fault reports. In the event of
an incident the 68000 based system must absorb all of the
reports being generated by the 6809s and react to them as
a pp r 0 p r i ate. A m a j 0 r feat ur e 0 fan y s u ch s y s t e m is
invariably a queuing mechanism. This is used both to handle
the input load and to prepare information for the 9600 baud
terminals . In theproce ss of developing such a system a
mechanism called the execution queue was developed which was
found to have many beneficial attributes. This paper will
describe the application and the execution queue mechanism
a s we 1 1 as hi ghl i ghting the advantage s 0 f t hi s power ful
tool,
The. equipment consisted of:

Twelve remote plant outstations (6809 based
of interfacing with up to 10,000 I/O
sensors, valves, pumpi, fans, etc.

capable
elements:

A hi g h s p e e d s e r i a 1 r in g tor e po r t plan t c ha n g est 0 a
central processor. The ring is triplicaied for improved
security,
AnA¿tive/Standby ddal central processor sub-
process plant events and operator requests,
68000 VME-based with 40 Mbytes Winchesters
of RAM,

system to
These are

and 1 Mbyte

A high-speed serial ring to report outstation messages
and general man~machine interface functions. This is
duplicated for improved security.
A number of
interaction:- 5
telemetry link,

peripheral devices
colour graphics VDUs,

for operator
2 printers and a

318 The Journal of Forth Application and Research Volume 4 Number 2

OUTSATION

RING

..

PEJUPHERAL

RING

VDU,

3

VDU
re

The svstem software is capable of:

Plant status acquisition and storage.

Event monitoring and alarm logging.

Colour graphics status display under operator
control or automatically on events.

Operator ~nteraction and configuration changes,

Diagnostics and standby facilities.

Each one of these functions was assigned
polyFORTH task and a task is defined to
peripheral device,

t 0 a sp e cif i c
c on t r 0 1 ea c h

The system includes a description of all plant I/O, events.
alarms, and graphics representation. This is contained on a
il a m e d - f i 1 e , fixe d - 1 e n g t h r e cor d D a t a- b a s e he 1 don d i s k and
in global RAM, Information in the data base is defined
according to the particular function , and plays a key role
in the performance of the software.

The operatioa of the system is illustrated by the processing
of a plant event:

When a plant I/O change takes place, a
generated by the outstations., and sent to
CPU, The report includes information
identification (address in I/O space
value/status data,

report is
the central
on sensor
) and new

The report is received by the ring controller task
which then commands the Exception-Report task to process
the incoming data. It is then able to receive anqther
report.

Proceedings of the 1986 Rochester Forth Conference 319

The report processing task performs two functions:
Update the data-base entries affected by the report and
log the event in an app~opriate alarm file.

Any change to the data-bas~ is reported to the
operator (d~splays, printouts), To do this the report
processing task in turn commands ALL operator interface
task to update their output to show the change, and
attract the operator's attention. Similar requests are
sent to the Standby link task so that changes ..in the
Active processor are also reflected in the data-base of
the Standby CPU.

The main interface with the operator is through the
Display-controlling tasks. Plant status is represented
as detail and overview mimic diagrams, histograms,
Help-screens etc. The command to display the data-base
change is vectored according to the "current" display
type in each task, The first thing it normally does is to
see if the sensor is currently being displayed, if not,
no screen action is required. The characteristics of the
display update (colour, attribute, symbol etc) are in
turn vectored according to user-defined I/O element
characteristics, This means that the event processing,
storage and display update for all output peripherals is
very fast (no IF. ,.. ELSE"., THEN statements).
If previously programmed and enabled into the I/O
characteristics in the data-base a new display is
automatically set-up in each task_ (auto-paint).

In response to plant event reports, the operator can
interact with the system in a number of ways: accept an
alarm (by name, file position or time), isolate I/O
elements from scanning by the outstation, re-direct task
per i pheral assigmen t s, etc.

The system recognises three levels of access: Operator,
Engineer and Supervisor, each level being a unique
polyFORTH vocabulary with password access. This enables the
use of the standard polyFORTH keyboard interpreter as the
main man-machine interface. Operator optiòns include
display~type selection, .Diagnostics, on-line editors (for
data-base and displays) as well as on-line reconfiguration.
All these options are protected against operator misuse with
copies of operator actions being automatically logged.

When a fire occurs it is likely that a number of sensors
will raise alarms simultaneously. The processing of these
events requires multiple accesses to disk to interrogate the
data-base as well as making entries in log files, The
resulting display changes are output over the networks at
9600 baud. Both these actions will limit the short term
throughput of the system, A common technique for
simplifying the organisation of such systems is to separate
the respective functions using a queue to act as a buffer

320 The Journal of Forth Application and Research Volume 4 Number 2

desyachronising the tasks. This tool also provides a
solution to the problem of how to produce a multi window VDU
us i n g a con v e n t ion a 1 sin g 1 e ch an n e 1 t e r m i n al. I nth i sea s e

each data source (e,g, time display, sensor colour control,
alpha log) places a suitable entry into the queue and a
single task removes en tr i e s, examines the en try and per forms
the appropriate output,

Early on in the design of this system it was clear that many
different types of message would be passed between tasks
using the same queue, The scheme implemented consisted of
words that would place a number of stack entries into a
queue followed by the number of entries and the execution
v e et 0 r r e qui red by t he de s tin at i on task t 0 pr 0 c e s s t ha t
data. For example:

. LOG (r F - 2 : Q LOGS ;

will place two values from the stack (record number, file
address) and the address of LOGS onto the current queue. /
Typically LOGS will be defined as

LOGS (r F -) F# ! READ ,RECORD ;

where READ read the record number of the file whose address
is in FE and .RECORD prints the currently accessed record,

The destination task is now simply

BEGIN QLENGTH ê
IF êQEXECUTE THEN PAUSE

AGAIN

Where êQEXECUTE unloads the queue prior to executing the
vector,
This technique has proved very effective. Firstly it means
that all serial output tasks including the standby link
task execute the same code shown above , Secondly, as SODn as
the basic task structure is built, all application and
terminal specific software may be developed interactively at
the operator's VDU using conventional stack techniques but
using the keyboard interpreter to transmit the desired
queue entries to the task under development, Thirdly, the
absence of flags or indexes wi th tables of actions means
that as changes in the system are made, either to develop or
modify the code~ a change in one task automatically
transmits its requirements to the destination task. This
minimises coupling between the tasks giving a higher
reliability when making program changes.

The complete software for the system took 12 man-months to
design, program, test and document. The software forms the
basis of a general package currently being installed in
several other major control systems.

