
Proceedings of the 1986 RochesterF0rth.Conference 325

What Can Be Done Wi th Meta-Compi 1 ers?

by Ri eks Joosten
Pi j nenburg Sof tware Development B. V.

F'. O. .Bm: 82
5270 AB St~ Michielsgestel

The N,::therl i~.llds

Abstract

A For-th system h,':s been modifi ed and e~.:tended so that it bec¿:.me a
tool with which compilers can be built; these unitethè powers of
classical compilers with the characteristic development facilities
found in Forth systems. This Meta7tool (Meta as in ~1eta-Physics) not
only allows for building powerful compilers for almost any machine¡
but also for building an integrated development system that includes
debugging and simulation facilities. Also, the variety of tools that
may be needed for a number of different target machines. may look very
much alike so that one can speak of an integrated tool kit, i.e. a
complete software development environment that embraces a (rather
i arge) cl ass of machi nes.

Introduction
One of the, major developments of Pijnenburg Sofh.¡areDevelopmenL (PSDl
fast year, was the creation of the software for a Hand Held Computer
(HHC) project, which was a joint enterprise of Matsushita Electrical
Industries (MEI), Japan, and PSD, This project allowed testing of the
concepts used in the Meta-tool kit (ROe), The project consisted of the
creation of a Hand Held Computer FH2000 by MEI,whilethe software was
created in mutual cooperati on, The (Joal of the project was to create a
powerfu.l machi ne for f i nanci a1 type purpo!:.es, in such a way that
Eipplication programs servi.ng sl.lch purposest.¡ill efficiently e:.:ecute.
The hardware for the FH-2000 Hand Hel dCompute~consi sted of a 80e88
microp~ocesso~ ~unning at 4.77 MHz, an 80*8 characte~ LCD, full
QliJERTY keyboard, beeper", clock, 8kB ram, 64kB system ~om. Optional
hardware additions included e:.(tra r',,,m, p!'og~am roms, RS232, modem,' and
a printe~.

The hardwa~e on whi ch the, development tools we~e ~unning was the IBM
pc, supplemented with an (E) PROM burner (requi~ed to burn the p~ograms
into ~om), Although additional hardware was not strictly necessary,
ut ~l i z i ng a ha~ddi sk enhanced the perf ormance of the development
tools.
The development too1sfor this p~oj ect were based on PSD' s. FysForth



326 The Journal of Forth Applicatiön and Research Volume 4 Number 2

What Can Be Done Wi th Met a-Comp i 1 ers? 24-JUN-B6 Page 2

'86 Forth system (FYSJ, which included standard facilities like a
textfile editor, copy facilities, fii~handling, assembler etc. This
Forth svstem is more or less 79 Standard with extensions such as error
recover~, safe forgetting, and virtual memory handling" Exceptions to
the sL::.ndar-d VJers the mas.s stora.gef..icil i tt es (usï ng fì i es instead c,f
blocks), and the 5.ystem v¿:.ri abl eS,vihi diapply' the TO-concept..

From the HHC project it was learned that facilities such as extended
buffer management, symbol tables handling, target dictionary handling,
support for forward referenci ng, and 1 oggi ng needed to be avai 1 able.
These facilities were developed as separate support modules that,
together with the modified host Forth system, would form an entity
that ..Jas called t'1CS, the ~1eta Compilation Syst.em CPOCJ. ~1CS Hr..S t.he
b,:\sic tool kit, capr.ble of extending it.self in ,c3.ninteractive mi3.nner
while ha\/ing availe,ble the necessary hooks so that it coUld be turned
into .::n integrr..ted tool for sophistic':ted prolJram development.

The Meta Compi 1 ati on System Extended: Assembler Environments.

MCS would accept source texts that compiled an assembler on top of it,
similar as is done in any Forth system, In fact, only an estimated
5-10% of source of a regul ar FIG-assembl er needed to be rewri tten to
upgrade MCS to a full blown cross assembler with facilities such as
the abil i ty to use 1 abels, synonyms, macroes, forward referencing,
separated compilation for ROM and RAM, logging, reference counting,
etc. Other èxtensions includeddebugginq facilities (Dumping, Moving
of memory blocks, Verifying memory,etc) and simulation of machine
code e:.:ecution (tracing, breakpoints, -single stepping, disassembl ing
etc) .

In the same way, machine code devel opmentenvi ronments caul dbe built
for different machines. Having split extension modules in target-cpu
dependent and independent ones ,enab i edt he re-use of target-cpu
independent code. As a consequence commr..nds that woul d i-iri te part i all y
compiled code to file, reading pre-compiled modules from mass storage,
dumping of ta.rget memory, printing symbolic names a.nd their associated
target addresses etc. , would tlave the same s'ynta~.: and semantics
whether they were used i nan B088 or a 6809 development environment.
The general idea was that it WOL\1 d be sufficient to anI yonce learn a
machine code programming environment, and subsequently only learning
different cpu's (mnemonics, registers etc), so that programmers could
optimally use their time for the task they i.iere intended to do.
Although "'.uch development environments for diffet-ent machines look
very muchal i ke, it has shown to be pract i càl to somet i mes add
dedicated software tools to the environment, 50 that specific project
related tasks could be performed. Such tools would include
downloading, linking, etc. All this resulted in an intgractive
debuggi ng ai d for target code, that had compi 1 er and debuggi ng powers
beyond those of the classical dedicated tools.



Proceedings of the 1986 Rochester Forth Conference 327

What Can Be Done Wi th Meta-Compi 1 ers? 24-JUN-86 Page 3

The Concept: EVOLUTION Of Software

In a si mi 1 ar way as when upgradi ng MCS to an assembl er development
envinxwient, the latter t,J¿:.5 e;-~tended t'¡i.th Forth c;ro",-s compilersi
decompilers, high-level tracing, stack dumping etc. 50 that a complete
Fcwth development er";-.¡ r-onment.--=- evol ved. HOt,jever, al ttrol.l.;jh 8;-¡ t.end i ni:)
the development system coul d be done before the actual target
compilation process, these could be combined so that while
accumu i at i ng obj ect code, the pm,-.ier c,t the ¡jpvelopment envi rï:mment
,'muld grow -3.;:- \'¡e11. Thi:-;- en,3..bled ta.ilori.ng the debugg:i'-"J aid~,tD the
Dbject binary. and testing the routines as they were compiled. In such
a way, the tool ki t as well as the compi i ed code gradual i y evol ved to
an optimum,

The development. pnvironment was:- not only used for the cr-eation of
the t.argetted 50ftwáre, but also for building separate, stand-alone
debugging aids. As an example, code that complet.ely simulated t.he
t¿:-rget computer t,j-:,:-:- bui 1 t. so th-:'t the I/O pa.rts of software coul d be
tested. The si mul ated computer software was made even before the
hardware was available, and it was changed rapidly when app~opriate.

Not only was the development environment tailored for software
test i ng at the hardware 1 evel, it was also tuned wi th respect to the
user interface. A programmers interface i denti cal wi th that of
acl assi cal tool was put on the environment 50 that programmers were
not exposed to too many differences. As more power was required, the
programmers were taught how to use the development envi ronment itself,
rather than the limited classical tool interface. In this~ay,
programmer::- ,'¡ere graduall y brought in contact t,ii th t.hi s di fferent
approach to program development.

Performance

The tools described above made it possible to implement many features
into the operating system of the HHC in a relatively simple way. Such
features included stringent error handling, 18 digit precise floating
point (i.ncluding all scientific fLlnction~,), alar-m-- and time-h,3.ndling,
file manipulation, buffer management, hardware configuration and
relocat.ion, several I/O layers, exceptional event handling etc.

The development system included complete simulation of the target
computer and debugging facilities, both fo~ high level Forth code as
t,¡ell r-S for machine code (e.g. stepping,' tracing, breakpoints,
dumping of st.acks, compiling, etc.). Arguments for debugger commands
could be nume~ic, symbolic, or calculat.ed from a mixture of those.

A 1 i mi ted number of people both from MEI and PSD have worked
approximately 1 year to design and develop the hardware, system
50f twar e and the development env i ronment.

/



I

328 The Journal of Fort Application and Research Volume4 Number 2

What Can Be Done Wi th Meta-Compi 1 ers? 24-JUN..86 Page 4

Ti mi ngs of the compi 1 ati on process i nthe development envi ronment
have i ndi cated a compi 1 ati on speed of approx. 200kB source text per
minl.\te (.ei.part f~com readingh.¡riting to di,:k a.nd other I/O), This
process generated very compact machi ne- and Forth code.

Concl usi ons

A compl ete development envi i~onffmt ~iB.5 buil t tha.t unif i ed the pCWJers
fr"om interactive Forth ,3.nd cla~.sic':lcompiler5. The intelJ..ated
development enVironmént L'¡Quld look ;:.imilar for dif-ferent target
machines. while it s.till could be tailored for specific needs in a
project 6r for a prog"-ammer. Also, it ~ould be extended both
i nte..acti vel y or in batch mode, ei ther separate from actual target
compilation ~tocreate a specific tool1, or by having it" evolve withthe target software. .
Although the gene"rality of the concepts SE'em to contradict the fact
that a davel opmenttool 1 ike thi scan - be. tuned to a preci 5.ion
instrument, pra.ctice showed this not to be thecas:e.'E:.~perience ~Jith
the Meta Compilation Sys:tem has: shown a significant reduction in
development and testing time, both for applications and tools,

Ac knowl edgement 5 and Ref erenc:es

I ~JOU1. d li ke to thank !'1atsushi ta El ectri cal Indu5tri es (MEI) ,Japan,
and their engineers, for their cooperation and the project in which
the ideas of the Metacompilation System could be expanded, Also, I
would like to thank Dr. Hans Nieuwenhuyzenfor his advice and for his
letting us tryout ideas on him,

- (ROCJ 1985 Roches:ter Forth Conf~rence. The abstract of this paper
can be found in the conference proceedings. The article itself is
s~Jmitted for publication in the Journal of Applied Forth
Resea~ch (yet to be publ i shsd) .

- CFYSJ FysForth '86 User Manuali Mountain View Press, PO Box 4656~
Mountain Vi ewi CA 94040.

- (EVDl EVOLUTION, Pijnenburg Software Development, P.O.Box 82,
5270 AB St. Mi ch i el s:gesteli The Netherl ands.


