
Proceedings of the 1986 Rochester Forth Conference 343

SWIFT--A NEW TYPE OF FORTH APPLICATION

John P. Mullen
Department of Industrial Engineering

Iowa State University
Ames, Iowa 50011

INTRODUCTION

Nonlinear Optimization
Nonlinear optimization (NLO) is the search for the best solution

within a set of feasible solutions. There are no restrictions on the
type of constraints that determine the feasible region or on the order-
ing function that is used to compare feasible solutions. Search tech-
niques, analogous to groping for the highest spot in a field by night,
are often used to find solutions to this type of problem. Specific
algorithms differ in the types of problems they can solve, in how
efficient they are, and in what information they require .

Because of the variety of such problems, no single algorithm can
be guaranteed to work at all times." In addition, results often depend
oni.the starting point of the search and on the working parameters of
tlilichosen algorithm. Thus, the analyst must often apply each of
several techniques many times in a trial and error process to find an
opt.imal point.

In addition, the form of the constraint functions and the ordering
fúnction may be arbitrarily complex. Thus the analyst must be able to
specify them in a general way, usually by using external functíons or
subroutines. Finally, since many calculations may be required for each
point and since many points have to be evaluated, high execution speed
is a necessity (1).

A Choice of Computer Language
Because of the power, flexibility and speed required, most such

analysis has been done in FORTRA. This is a good choice if one is
using a large computer, but microcomputers are 6ften used to solve
moderately large problems . Current implementations of FORTRA do not
allow one to make full use of the microcomputer's interactive nature,
and much of th~ potential advantage in this approach is lost. Forth is
a good alternative to FORTRA. It is fast, modular, and interactive.
In addition, the advent of the mathematic coprocessor has made needed
fùnctions available and floating-point operations efficient.

THE FORTH NLO SYSTEM

The thrust of this project is to develop an interactive environ-
ment in which an analyst can use Forth to solve nonlinear optimization
problems effectively. To this end, three maj or components have been
developed: ORDERED;"POINTS, SIMPLEX-TOOLS, and GRAPH-TOOLS. In addi-
tion, one pattern-search algorithm called SWIFT is currently being
tested. An initial version of this system was developed on a

344 The Journal of Forth Application and Research Volume 4 Number 2

Commodore-64 (2) using SuperFORTH-64 (3). Once the utility of this
approach was demonstrated, the system was adapted to an IBM-AT (4)
using PolyFORTH (5).

ORDERED- POINTS

Optimization algorithms have several common characteristics:
possible solutions can be represented as points in N-spacej new points
are generated from linear combinations of existing points; and solu-
tions are evaluated in terms of functions of their coordinate values.
The Forth component ORDERED-POINTS conceptualizes these characteristics.

The word PVARIABLE defines an instance of the data structure

(If:y(X) :xl x2 ... xnJ where the xi represent the coordinates of the
point R, y(~) is the value of the ordering function at that point, and
the flag indicates whether or not that value is valid. Other words
facilitate the manipulation of these data elements. For example,

. .. XL X2 2DUP P(IF PSWAP ELSE 2DROP THEN

compares the two points XL and X2 on the basis of the ordering function
and interchanges them if XL is less than X2.

SIMPLEX-TOOLS
A simplex is a N+I straight-sided figure in N-space. For example,

a simplex in 2-space is a triangle. Pattern-search algorithms work by
generating a series of simplexes and examining the value of the ordering
function at their vertices. They first attempt to include the optimum
point within a simplex and then to reduce the size of the simplex until
it is arbitrarily small . This boxes in the result. Each algorithm
differs in the way it performs the search and in the way the ordering
function is constructed.

Because several algorithms deal withsimplexes, SIMPLEX-TOOLS was
developed in which POINT, an array of PVARIABLEs, contains the coordi-
nates and function values for the vertices of a simplex. This component
also contain words that perform other subfunctions common in pattern-
search algorithms. For example, PH?! determines .which vertex of the
simplex has the highest function value. Another word, . SIMPLEX displays
the entire simplex in tabular form. SIMPLEX-TOOLS facilitates the
manipulation of NLO problems so well that it is possible to solve simple
problems without resorting to automatic algorithms. It is also useful
for examining points in the .region of an algorithm's solution.

GRAPH-TOOLS
Two-dimensional problems may be displayed as graphs. For example,

pattern searches appear as a series of triangles such as in Fig. 1.
This component assists in debugging algorithms and is also useful as an
aid to help explain to students how a given algorithm works.

SWIFT

SWIFT was chosen as the first algorithm to implement because it
often yields good results, it does not require one to compute partial
derivatives, and it is typical of pattern-search algorithms. The SWIFT

Proceedings of the 1986 Rochester Forth Conference 345

8

7

6

5

4

3

2

i
i 2 5 643 8 97

Figure 1. Graph of ten consecutive simplexes,

algorithm combines the optimization function and the constraint functions
into a single ordering function of the form

yQP = f(~) + w '!~(fgi' (~)).
z=1

where f (~) is the original function to be minimized, and each gi' (X)
represents how much the point ~ violates the ith constraint. Initially,
w, the weighting factor, is a small number, which causes the constraint
functions to be almost ignored; but when the algorithm narrows in on
the best point, w is made progressively larger until it is so large
that the solution is virtually guaranteed to be feasible.

Implementation
Thanks to the ORDERED-POINTS and SIMPLEX~TOOLS, the implementation

of SWIFT in Forth was rather straightforward. The component SWIFT is a
set of words that allows an analyst to set up a problem, to control the
SWIFT algorithm, and to examine its results. This component's develop-
ment involved the mechanics of how the analyst invoked the proper Forth
screens in addition to the algorithm itself.

The use of software modules (6) allows one to load the entire
system with a phrase such as "5 CONSTANT #DIM SWIFT." However, there
is a chicken-and-egg problem in that the components are needed to
facilitate the definition of the ordering function, but the ordering
function must be known in order to define the algorithm. This was
resolved by establishing the Euclidean norm as a default function with
vectored execution (7). Another function can be designated by storing
its CFA in the variable 'YCALC.

Performance
Identical problems were solved using both FORTRA and Forth

versions of SWIFT on the IBM-AT. Although Forth execution speeds
currently are slightly slower than those for FORTRA, they are compar-

The Journal of Forth Application and Research Volume 4 Number 2346

able. For example, in one case FORTRA took 19 seconds while Forth
took 24 seconds. The major disadvantage of using Forth seems to be
its unusual language, which requires one to restate algebraic expres-
sions into their Forth equivalents. However, one could argue that
this is a matter of taste.

On the other hand, the FORTRA version requires at least two full
minutes to compile and link, while the Forth version requires only four
seconds. In addition, it is far more difficult working with the FORTRA
program than the Forth one. Typically, I needed multiple printouts of
modules in FORTRA in order to coordinate my efforts whereas I was com-
fortable working with screen displays only in PolyFORTH. This is a
great advantage of Forth since an analyst may have to try several ver-
sions of the problem statement in order to find a solution. In addi-
tion, the FORTRA version produces a specific result whereas the Forth
version is interactive. This capability allows one to test constraint
and ordering functions as they are developed, to examine many aspects
of the solution, to examine the characteristics of neighboring points,
or to use the result as a starting point for some other algorithm.

CURNT WORK

Although there is little doubt that the interactivity of Forth
gives it a clear advantage over FORTRA in this area, there is still
much work to do. Currently emphasis is on improving the utility and
speed of the words in all three system components. A major problem
that affects transportability is dealing with the variety of floating
point implementations. Once the underlying system is improved, the
next phase will be to implement other algori thms.

REFERENCES

1. Tillman, F., Hwang, C. and Kuo, W., Optimization of Systems Relia-
bility, Marcel Dekker, Inc., New York, 1980, Chap. 2.

2. Commodore Business Machines, Norristown, PA.
3. Parsec Research, Drawer 1766-P, Fremont, CA.
4. International Business Machines Corp., Box 1328-C, Boca Raton, FL.
5. Forth, Inc., 2309 Pacific Coast Highway, . Hermosa Beach, CA.
6. Furman, Alan, "Module Management System," presented at the 1985

Rochester Forth Conference, June 1985 (unpublished).
7. Brodie, Leo, Starting FORTH, Prentiee-Hall, Inc., Englewood Cliffs,

i 9 81, pp. 217 - 2 I 9 .

