Proceedings of the 1986 Rochester Forth Conference 241

- ORFHAaNS
An Unreferenced Code Finder

Jamison H. Abbott
ibidinc
Suite 607
172 Allyn St.
Hartford, CT @641@3

ABSTRACT

For a variety of reasons a program may contain
compiled code that is not used by it. This tool,
.DRPHANS, allows the Programmer to find that unused or
“orphan’ code so that it may be removed.  The choice of
a very ‘Forth-like’ implementation of this tool,
relying heavily on the data stack and the dictionary,
instead of a more classical approach, using a symbol
table, results in trade-offs in speed versus
generality. This paper also briefly discusses how
.ORPHANS can be used for pruning a Forth nucleus; this
can be particularly useful in target—-compiling.

INTRODUCTION

This tool was developed as a result of both the all too
common need to fit more code into a 64K dictionary and my
suspicion that some of the compiled code that was already in the
dictionary was not being used. One reason that some of the code
in the dictionary might have become unused is due to human error
on the Programmer 's part--usually as a side effect of revising
the source code. Moreover, if one is utilizing some unfamiliar
library routines, it is guite possible that some of the routines
in the library are not needed by the final application. The
detection of those unreferenced routines is not an easy task for
the Programmer if the library is large; with this tool, it
becomes semi-automated. In addition, much of the nucleus code
may also be unreferenced by an application; this tool can find
that code as well.

DESIGM % IMPLEMENTATION

The design is based on knowledge of the implementation of
the dictionary structure. We traverse the dictionary from top
{latest compiled word) to bottom. For each word encountered in
the dictionary we look at the data stack to see if that word’s
CFA is in 1it. 1f it is, we remove the CFA and continue down to
the next word in the dictionarvy. If it's not there, we print out
a message flagging that word as an orphan and continue down to
the next word in the dictionary.

However, before continuing down to the next word in the
dictionary we check to see if the current word is a colon



242 "~ The Journal of Forth Application and Research Volume 4 Number 2

definition. If it is, we take all the CFAs that make up the
body of the word (the ‘constituent’” CFAs) and put them on
the stack. To prevent the stack from growing too large we
check the stack for CFAs that match the constituent ones so
that we never put any duplicate CFAs on the stack.

This process continues until either the FENCE is reached or
until the bottom of the dictionary is reached (see listing). For
those whose implementation does not include FENCE, it may be
defined as:

FENCE ——— addr A variable that contains an .
address below which FORGETting is trapped. [LMIgal

APFLICATION

To use .ORPHANS follow the instructions (see listing) on
screens four and five respectively for finding unreferenced code
and for pruning the nucleus. Because .0ORPHANS doesn’t always
handle certain cases correctly (see below) any words that
references with the search function of your editor.

CONCLUSION

.ORPHANS has been used sucessfully in the development of
several programs. However, since .DORPHANS makes such intimate
‘use of the dictionary, the source code for it may have to be
modified to conform to a particular user’'s implementation of
Forth. Although an implementation of .ORPHANS which used a sym—
bol table instead of relying on the dictionary would probably
more accurately handle such cases as: Vectored execution, GQUANs
and other multiple-CFA words, Children of defining words, Words
that are only referenced inside Code words, Recursive definit-
ions and Vocabularies (these cases are not usually handled cor-
rectly by .DRPHANS): a symbol table implementation would, most
likely, also be much slower [FEIBS].

REFERENCES

[LMig41l Laboratory Microsystems Incorporated,
FPC/FDRTH Language Reference Manual

[FEIBS] Gary Feierbach and Paul Thomas,
Forth tools and applications,
Reston Publishing Company, Inc., 1985
(CONCORDANCE program: pp. 38-34)

AFPENDIX —— Non Forth-83 Words —— [LMIBA]

. NAME addr ——— Given the address of the name field

of a dictionary header, displays the name on the
current output device.

ALIGN addrl ——- addr2 1f addrl is odd, round it up
to the next higher address

SNAME, >LINK, >BODY, NAME> (field address conversion words)




Proceedings of the 1986 Rochester Forth Conference

243

Screen # 4

{ .ORPHANS: UN-REFERENCED CODE  FINDER 14:13 11/12/85 )

To use .ORPRANS to find unreferenced code:

First, clean out the dictionary by performing a COLD,
Then, load the .ORPHAKS screens. Next, load your program's
source code on top of ,ORPHANS. Last, invoke the utility by ty-
ping the word .ORFHANS and answering the proapts. ' When the word
JORPHANS is interpreted the NFA of your program’s last (top-most
in the dictionary) word should be on top of the stack: le.q.
LATEST .ORFHANSI. You will then be asked if you want the trace
on. Answer 'Y' if you want to see the full execution of the
utility including the CFA's of all the words that it encounters
in the dictionary. If you answered "Y', then you will also ze
asked if want to single-step thru the execution of the utility.

Screen # &
( .ORPHANS: UN-REFERENCED CODE  FINDER  jha 17:B1 84/
{ Labaratory Microsysteas -- PC/FORTH 3.9 -- FORTH 83 )
( Medified jha 8/9/83: added skip-over on 1it eral strings }
" unnest COMSTANT “;-CFA
VARIABLE CURR-CFA
VARTABLE SAVE-PF&
B CONSTANT DUMKY

{ BELDN: Get CFA's

2/85 )

of non code-type definitions |}

‘ FORTH @  CONSTANT vocabulary-CFA ( 8327h )

"sae CONSTANT user-CFA { 831Bh

" CURR-CFA @ CONSTANT variable-CFA  ( 838@h

* DUNHY @  CONSTANT constant-CFA  { Q3@8h

' WORDS @  CONSTANT colon-CFA

' SOURCE &  CONSTANT source-CFA

* litq CONSTANT (."i-CFA

Screen # 9

{ .ORPHANS: UN-REFERENCED CODE FINDER  jha 17:81 @4/12/85

(. Laboratory Microsysteas -- FC/FORTH 3.8 -- FORTH '83 |
VARIABLE SINGLE-STEP
VARTABLE TRACE
t N (no-- ) DUP U, HEX @ <% 41 HOLD 104 HOLD & # & % &>
TYPE DECIMAL 4
+ NAMELCFA  ( CFA -- / displays the name and CFA
BUP INAME .NANE ." (CFA= " N, ;
: (ORPHAK ( -- ) CURR-CFA @ CR DUP DUP. YNAME .NANE
J" --IS AN ORPHAN ° ." (CFA=" N. .TYPE ;
: MEGSABE! CR .* Now Below the Fence -- Quitting..." CR

: MESSAGEZ  { -- ) CR LR ." Starting the Rum... " SINGLE-STEP @
IF CR ." { Press any key to continue the trace ) * THEN ;

: MESSAGES ( -- ) CRCR CR ." Do you want trace on? {(Y/N}

i MESSAGE4 CR CR .7 Do you want single-step on 7 (Y/N} *

Laboratory Microsystems PC/FORTH 3.20

Screen # S

( .ORPHANS: UN-REFERENCED CODE  FINDER 14:13 11/12/85 §

To use .ORPHANS to prune the Forth nucleus:

The procedure in this case is similar to that when find-
ing unreferénced ‘code; however, in this case you should load
your pragraa’s source code FIRST and then Ioad .ORPHANS on top
of it! BUT, be careful to invoke .ORPHANS with the NFA of the
toprost word of your application {use WORDS or YLIST to see) and
NOT the topeest word of (ORPHANS! (Note: this procedure will
prevent ORPHANS from “seeing” itself so it won’t be counted in
the referenced code.)

Alsg, since .ORPHANS stops shen it encounters the "fence  aarker
you should deactivate the fence by setting to zera {the botteom
of the dictionary}.

Screen # 7

JORPHANS: UN-REFERENCED CODE  FINDER  jha 17:01 94/12/85
( Laboratory Microsysteas -- PC/FORTH I.@ -- FORTH "83 )
: JTYPE S (cfa -~ / display type of definition )

SPACE DUP DUP @ 7- =

IF  DROP ." { code }*
ELSE &
CASE
colon-CFA OF .* { colon )™ ENDOF
variable-CFA OF .* ( variahie }" ENDOF
constant-CFA OF ." { constant ')*  ENDOF
user-CFA OF " ( user }* ENDOF
vocabulary-CFA OF .™ ( vocabulary )" ENDOF
source-CFA OF .* { source }* = ENDOF
. { unknown ) ' 7 .EMIT
ENDCASE
THEN ;
Screen # 2
{ .CRPHANS: UN-REFERENCED CODE FINDER ~ jha 17:@1 94/12/85)

{ Laboratory Hicrosysteas -- PC/FORTH 3,8 -- FORTH '83 )

t ENPTY (abc...---/ eapties the stack of all itess
DEPTH @ 700 DROP LOOP ;

AT --- / DISPLAY THE DEF. THAT WE ARE CURRENTLY AT
TRACE @
IF CURR-CFA @ DUP
CR 12 SPACES .* AT: " NAMEACFA .TYPE
THEN §

#9:13 @5/12/856 Tf:orphans.scr



244

The Journal of Forth Application and Research Volume 4 - Number 2

Screen # 10
{ .ORFHANS: UN-REFERENCED CODE  FINDER  jha 17:81 04/12/83 )
{ Laboratory Microsystess -- PC/FORTH 3.8 -- FORTH "83 )
VARIABLE NOT-ON-STACK-FLAG
VARIABLE S-MATCH
: MOT-ON-STACK  { n -- f / Search the data stack for a smatch,
drop. it from the stack if found. Leave a result flag. )
S-HATCH ! | NOT-ON-STACK-FLAG
DEPTH 8
00
I FICK S-MATCH @ =
IF I ROLL DROP
ELSE I
THEN
+L00P
NOT-ON-STACK-FLAG &

@ NOT-ON-STACK-FLAG ¢ 8

Screen # 12

( .ORPHANS: UN-REFERENCED CODE  FINDER ™ jha 17:04 84/12/85

{ Laboratary Microsystems -- PC/FORTH 3.8 -- FORTH '83 )

t PUSH-EM ( -- a b .., \leaves the CFA's on the stack )
CURR-CFA @ »BODY DUP  BEGIN &  { curr-PFR call-CFA )
DUP (.")~CFA = { check for strings\curr-PFA call-CFA flag)

IF DRGP 2+ DUP.C@ + 1- ALIGN DUP @ THEN ( curr-PFA cali-CFA)
DuP ;-CFA O { -~ curr-PFA call-CFA flag )
RHILE { =~ curr-PFA call-CFA )
DUP CURR-CFA-@ U NOT { check for fwd branchi
OVER ONAME FENCE @ U{ OR  { belaw fence ? )
IF OROP
ELSE SWAP  SAVE-PFA ! ALREADY-ON-STACK IF DROP THEN
SAVE-PFA @
THEN 2+ DUP
REPEAT  DROP DROP ;

Screen # 14
{ .ORPHANS: UN-REFERENCED CODE  FINDER  jha 17:01 84/12/85
( Laboratory Microsystees -- PC/FORTH 3.8 -~ FORTH 'B3 }
+ ,ORPHANS ( nfa -~ / prints the naaes of uncalled definitions }
DUP FENCE @ L NOT
IF  MESSAGE3 KEY ASCIT Y =
IF  MESSAGE4 KEY ASCII Y = IF | ELSE @ THEN ! ELSE 8 @
THEN TRACE ' SINGLE-STEP !
HESSAGE2 NAME) CURR-CFA ' .AT .ORPHAN
BEGIN
PUSH-CFA'S NEXT-DEF,
WHILE
SINBLE-STEP @ IF PCKEY ?DUP ZDROP THEN .AT
CURR-CFA @ 7NOT-ON-STACK IF .DRPHAN THEN
REPEAT
ELSE DROP
THEN EMPTY

CURR-CFA @ MNAME FENCE @ UC NOT

NESSABEL ( .S 1 ;

Laboratory Microsystems PC/FORTH 3.00

Screen # 1!
{ .ORPHANS: UN-REFERENCED CODE FINDER  jha t7:81 B4/12/85
| Laboratory Microsystems -~ PC/FORTH 3.8 -~ FORTH "83 )

VARIABLE ALREADY-ON-STACK-FLAG
VARIABLE CFA-MATCH .
: ALREADY-ON-STACK ( n -- n § / Search the data stack for a

satch. leave then match value and a result flag, )
CFA-MATCH ' B ALREADY-ON-STACK-FLAG !

DEPTH @

7m0

1 PICK CFA-MATCH & =
IF 1 ALREADY-ON-STACK-FLAS
THEN

Loop

CFA-NATCH @ ALREADY-ON-STACK-FLAE @

Screen # 13
( .ORPHANS: UN-REFERENCED CODE FINDER  jha 17:81 B4/12/85
( Labaratory Microsysteas -- PC/FORTH 3.8 -- FORTH "3 )
@ CONSTANT BOTTON  ( Bottom of Dictionary ? )
+ NEXT-DEF.  { --- / put cfa of next definitien in CURR-CFA
CURR-CFA @ *LINK @ .
DUP BOTTOM U> NOT ABORT* Bottom of Dictionary®

NAME> { -- nextCFA )
CURR-CFA !
+ PUSH-CFA'S { --~a b c,.. / pushes OFA's on the stack unless
the current definition is not a colon definition.}
CURR-CFA &
DUP DUP & 2- =
IF DROP
ELSE @ colon-CFA = IF PUSH-EM THEN
THEN

Screen # IS5
{ .ORPHANS: UN-REFERENCED CODE FINDER jha  89:57 94/17/85 )
{ Laboratory Microsysteas -- PC/FORTH 1,25}
{ Modified jha B/9/65: added skip-over on literal strings |
HEX 8B4l CONSTANT ;-CFR  DECINAL
8 VARIABLE SAVE-PFA
8 VARIABLE CURR-CFA
B CONSTANT DUMMY
* FORTH CFA & = CONSTANT vocabulary-CFA
‘58 CFA 8  CONSTANT user-CFA
' CURR-CFA CFA @ CONSTANT variable-CFA
* DUMMY CFA @  CONSTANT constant-CFA
" YLIST CFA @  CONSTANT calon-CFA

"{.") CFA CONSTANT (.")-CFA (183E )

s PFA (cfa --pfa ) 2+

gP:14 H5/12/86 Tfzorphans.scr




