
Proceedings of the 1986 Rochester Forth Conference 181

Systems that have ideas instead of rule based knowledge
Rene Heuer

(040) 250 44 38
Salingtwiete 4 g

D-2000 Hamburg 26 W-Germany

Definition of an idea

If you have a screwdriver, you have a lot of ideas what could be done
with this tool. These ideas are coming up because you -know that the
screwdriver is a tool and there could be a situation where you have
for example - an unopened bottle and a screwdriver. A screwdriver is one
of a lot tools that opens bottles.

An idea is knowing about alternatives which are found by assoziations.
My human idea was to organize possible assoziations in computer memorys.
After a short time of hard work I stopped because I found thßt it is
absolutely impossible to organize assoziations. Assoziations mu~t be
found and organized by the system itself. What I had to ,do was to find
out something like ga~ic motivaton to search assoziations. This ga~ic
motivaton must be programmable.

Basic motivation and datastructure

There must be some reasons for the system to manipulate his own data
structures. These reasons also must have the same currency in every
situation that could be. All possible reasons can be represented only by
one, called gahic motivaton. I formulate it to:

Il thvu i~ anytfg gad, fAy to eLat yoWl ina1 ah~umptiOM ol
thi4 negatve ~itaton.

Because the manipulation must be possible on each level of
datarepresentation I have saerched for a datastructure that must be easy
to handle with time efficient CPU instructions. 10R7H ~howød me the
~ght way. In FORTH it is very easy to define structures that have
pointers to memory fields with structures that are redefinable under
process. But the restrictions of 16 bit organisation in normal FORTH
systems are keeping the system slow. I need 32, better 64 bits for
addressing the assoziations in a very short time - because we are
talking about real time artifical intelligence. Today I write a subset
of FORTH that is very specified to these ptoblems.

Every date in the system is represented by characters and pointers. The
characters are oniy characters, a pointer is the difference to the next
character or to an array of pointers.

Structure of a normal character:

+------+-----------------------+
! byte ! 32 bit address !
+------+-----------------------+

byte
32 bit address

single character of a sequence
difference to next character or array

182 The Journal of Forth Application and Research Volume 4 Number 2

Structure of an pointer array:

+-----------------------+
! 32 bit addresss !
+-----------------------+
! 32 bit addresss !
+-----------------------+
! 32 bit addresss !
+-----------------------+

+-----------------------+
! 32 bit addresss !
+-----------------------+

32 bit address = difference to next character or array

Assoziations on character level:

r-)-+
!

+---0-(-+

!

+-)-s-)-+-)-+-)-+ pointer to 3 pointer array

pointer to assoziation e-(-+ rose

+-(-m---(---+
!

+-)-a -----(-----+

!

r
!

pointer to assoziations y ... rosary, rosemary

There are two reasons for this structure. First - ev~y olt UAød
cfaAad~ ;'equeCl can ß. /lp/lMn:ted on1y 1ly O!l poir. Second - a.
WO/d;, ol- a naifJ./ia1. 1.anguage can ß. /lacf ß.y a poir. At the end of
every word or sequence of characters, there is an pointer too that
addresses an array of pointers in every case. This is because the word
could have an assoziation to an other word (for example: tool). Possible
assoziations, are now represented only by one pointer. Because ther is
to do a lot of garbage collection when a new character is integrated to
the system I found that this ;,y;,ie ned;, ;,1.p. This seems to be stupid
but I found no other synonym. Every new characters, pointers to existent
character sequences or assoziations must be available immediately. So
the manifestation of knowledge is done when the system is not in ùse. At
the other time the pointer arrays are positioned at the end of
datamemory and differences are integrated while the system works for the
user. But now I want to go through an example of assoziations in the
next higher level and coming back to lowest assoziation after I told
you, why my system needs ;,1.p.

If the system finds the word screwdriver it has an assoziation to tool
and now, via tools pointer array, to many other tools. In this example
tool is one level higher than screwdriver. The datasructure of knowledge

Proceedings of the 1986 Rochester Fort Conference 183

in my system is stricly organized in notion levels. To work through this
knowlwdge with the lama ca1cuLu~ it is very very easy to do, because
you need no parathensis or other synomymous of things what FORTH
programmers make to hate this structure. I went an other way to work
through heuristic organized knowledge, but the realisation in FORTH
takes time. I hope the end of this year will bring me th iÆ ~n
10R7H. Whatever, knowledge in this systems is not absolutely true. This
is because assoziations in this representation are very dynamically.
When the system is in use, it úwu~new facts and gets new assoziations
in his knowledge base. The manifestation of new pointers or pointer
arrays is done by the gaAic motivaton. New assoziations are coming up
and new IDEAS are in system's mid. Because this takes time and memory
space the system needs ~le~ to do not forget. After more and more
knowledge is manifested the sleeping time is going down more and more
too becuse the user cant tell the system news.

To build and test assoziations, my system needs ga~ic motivaton. There
must be some definitions to sense positive or negative situations. My
definitions are extremely simple, but very efficient.

Info not found, info not received, external reaction negative.
o Info still available, no external reaction.
+ Info found, Info received, external reaction posi ti ve.

Learning of new facts and manifestation

If anyone tells the sytem that the ~o~e ~ a~lan after a lot of
assoziations are manifested, something like the following is happend:

1. the
2. rose
3. is
4. a
5. plant

next word could be plural or singular
object(s) that gets an assotioazion
plural can't be
assoziation is singular also
assoziation of rose

One of the best things in FORTH are the ~ltve/ and so my sytems has
something like this also. I call them ~im~ú~ to have a differntiation
to FORTH. Till now there are the following ~im~ú~

-) = word -) assoziation, the character sequence gets a new pointer
in its assotiation array.

! ! word!! , there can't be found an assoziation.

~- ~- word, word is an assoziation itself.

?! word -) assoziation ?!, found an assoziation that is contraher to
one or more other.

?) word -) assoziation ?), question if there are assoziations in a
higher level.

Using the sentence nth ~o~e ~ a ~lant" as an example for this ~im~ú~
it is possible to show the internal building of new assoziations. Or let
me reformulate the title of this paper: the ~y~Le ha~ an ne ida.

The Journal of Forth Application and Research Volume 4 Number 2184

Here is the detailed showing what is going on in the system:

"the" -) singular
"rose" ! !

"is" -) "build assoziation"
"a" -) singular
"plant" l:- "plant"

Stheme : "rose" -) "plant"
"rose" l:- "plant"
"rose" ?)
l:- "plant"
"flower" l:- "plant"

done in upper example
one more pointer to the lower level
more assoziations?
"plant" has more assoziations
assoziation to "flower"

NOW BUILD

"rose" -) "flower"
"rose" l:- "flower" put "flower" one level

an assoziation too and
as "plant".

up. Now "flower" is
on the same level

This is the actual situation with my system and it is a good situation
to get results like this wi thou t heuristics. But there is a lot of work
to do, to tell the system that not al plan aÆ lloweÆ~. I thinK the
best way to put flowers one level higher is to define my Ra~ic
motivaton in heuristics also and define ~imple~ to manipulate the
assoziation levels. At this time the complete system is existent on a
very small 68008 system with only S12k bytes. To define all basic ideas
this is enough, but to get a good working system I think we need one
6802U or NOVIX on the lowest level (character sequences) and eight 68008
on each higher assoziation level. If every level works autarc with his
own pointers it needs very short times to find and test new 1dah. I
hope that the definition of the very comlex hardware does not takes too
many time and is not too expensive ,because my system also must learn to
read. This is the simplest way to tell it a lot of facts in a short
time. If everything goes all right and the costs of electronics goes
down and I find a good join venture I hope that in 2 or 3 years a system
like this had read and un~tood the enceclopaedia ~anca.

I hope that my using force with your language was not too unbearable,
nevertheless, thank you for reading this paper wi th tolerance.

