
Proceedings of the 1986 Rochester Forth Conference 359

Forth-l i ke Languages for
Artificial Intelligence

Working Group Report

Chairman, James Bende.
Secretary, .Richard Maskell

1. Introduction

Relevant questions involving the design and use of Forth-
like languages for A I are as follows:
· What advantages does Forth provide that would make it suitable
for use in AI?

· Can Forth-like languages be used for
collection? If 50, then Forth could
advantages for real-time expert systems.

A I without garbage
provide substantial

. What features should be included in a Forth-like language
or i ented towards A I?

· Is the best solution to implement existing AI languages in
Forth or to add features to Forth to support symbollc processing?

. What Forth-based artificial intelligence tools are presently
available?
2. Advantages of Forth or Forth-like languages for AI

Like Lisp and Pro log , Forth is an extensible lBnguege, end
provides an interactive development environment. Many Lisp and
Lisp machine advocates Bre really environment8lists: they like
the interactive development environment rather than Lisp, itself.
With some enhancements to give Forth a more natur8l c8pebility
fo. manipulating symbols and a good environment, Fo.th might be
Just as suitable for symbolic . programming as is Lisp.

Another advantage of Fo.th is pe.fo.mance: Lisp, even on
Lisp machines, performs poorly, and devours memory. On the Lisp
machine, with the baroque, MIT system software, a gigawo.d of
virtual memory is not enough. Forth is efficient and fast, in
contrast with Lisp.

3. AI Without Garbage Collection

Garbage collection is a big hind.ance to the use of Lisp and
Lisp machines fo. real-time applications. Real-time is used here
as having to .espond to real-wo.ld events in less than a
mi 1 1 isecond. On Lisp machines, a context swi tch can take 2
seconds or more. Arguably, a system which queues .eal-wo.ld
inputs can be said to be real-time, but then answe.s based on
these inputs may take seconds or minutes. I t is not unusual for
answers from Lisp machine-based systems to take 20 minutes or
more Ca real example from a DARPA-funded cont.act).



360 The Journal of Forth Application and Research . Volume 4 Number 2

The solution to real-time AI seems to be to uee dynömio
memory management, rather than garbage collection. Garbage
collection either is incremental and uniformly degrades
performance (even in parallel, it is "stealing cycles"), or is
done when the stare of free list nodes is exhausted. In the
latter case, in a large system, garbage collection could take 20-
25 minutes. Henry Harris stated that his Pro log uses dynamic
memory management rather than garbage collection. Bill Dress's
RealOps appears to use an incremental form of garbage collection,
the exact nature of which has not yet been fevealed. Jim
Bender's Fifth-Generation Forth also is guilty of employing
garbage collection--one implementation uses "mark and sweep"
while in another implementation, the underlying system performs
incremental garbage collection. As Charles Moore reflected at
the 1985 conference, garbage collection is something to be
avoided. That is true far systems far which "speed" is more
important than just providing reasonable answers.

~. AI Features far Forth

The principal features required to support AI are support
far symbolic manipulation and object-oriented programming. Neon
is one example of a very Forth-like language and implementation
which supports an object-oriented representation. Charles Duff '5
language, Actor, is a Smalltalk-like language which is
implemented as a threaded interpreter.

One might ask exactly what is Forth: a language which looks
like Forth but which has a different implementation or a languagewhich uses infix natation, but which has a Forth-like
implementation. A purist might say that a language is Forth only
if a user may still access a Forth-83-compatible vocabulary,
interactively. Extensions to support AI can cause both types of
variation to occur.

Fifth-Generation Forth (FGF) looks very Focth-like
(especially pastflx notation and Forth-named, stack manipulation
words), but the current implementation effort is not based on a
threaded i nterpreterl ike Forth. Instead, FGF is a campi ler-
interpreter system which has some things in common with token-
threaded code, but is based on symbol ic programming. Wi th a
frame-based knowledge representation language, object-o~iented
programming support ("Simple" system), and a production rule
system, FGF is mare 1 ike an expert system shell than a language.
Any shell still needs a programming language interface, and it is
a Forth-like language, in this case.

5. Forth or A I Languages in Forth?

Jack Park's approach to expert systems using Forth (Expert-
1, etc.) is a model far doing AI directly in Forth. Henry
Harris's Prolog, Louis Odette's Prolog, and Bill Dress's OPS-5
are examples of implementing AI languages in Forth. The best
that can be said of AI languages in Forth is that they perform
about as well as the same language written in C, while
maintaining the interact ive nature of Forth and Forth's closeness
to the hardware. Another possibility far future exploration is



Proceedings of the 1986 Rochester Forth Conference 361

to generate threaded code as an abject code far a compiler.
Actor, being developed by Charles Duff, is the sale example of
this approach which has been described at this year's conference.

6. Forth-based Expert System shells and AI languages

The following is a list of known Forth-based AI tools
are actually available either as commercial or public
products, or have appeared in print:

which
doma i n

· Jack Park's Expert-2

. Forlog (in FigAI Notes)

. Louis Odette's Pro log on Macintosh

. George Levy's Small Expert System (Silicon Ualley FIG)

. Martin Tracy's List-handler in Forth Model Library

. Book: Designing and Programming a Personal Expert System,
by Townsend and Feucht, publ ished by TAB books

. FORPS, described by Charles Matheus at this conference.

There are a number of others in various stages of
implementation, including Actor and Fifth-Generation Forth.
7. Conclusion

There are clearly same advantages to be gained by using
Forth for AI: extensibility, interactive environment, speed
(especially for real-time), and the possibility of no garbage
collection (dynamic memory management under expl ici t program
co~trol) . Forth needs extension to support symbol ic
manipulation. Whether this entai Is bui Iding new standard
vocabularies, or implementing Prolog, Lisp, or OPSS in Forth
remai ns an open question, which wi 11 probably be hotly debated at
next year's conference.


