Compiling Prolog to Forth

L. L. Odette

Applied Expert Systems, Inc.
5 Cambridge Center
Cambridge, MA 02142

Abstract

The fact that the focus of a Prolog computation is the structure of the program leads directly to
a view of a Prolog compiler as a procedure that takes a collection of Prolog clauses and produces a
description of their structure that just happens to be executable. Forth lends itself naturally to the
description of both structures and processes. In fact, some hold that Forth programming involves
creating the parts of speech required to describe an application. This article proposes that for this
reason, Forth is a very good language for prototyping Prolog compilers. A simple object language
for a Prolog to Forth compiler is presented and discussed.

Introduction

A narrow definition of logic is the study of the arguments valid by virtue of their structure.
Having taken this view, a rule language (mechanical theorem prover) needs two elements: a
validation process and an internal representation of the argument structure. Rule languages can be
distinguished on the basis of how much structure they admit. Expert-2 [PAR84], for example, is a
mechanical theorem prover for propositional logic where complex arguments are described only in
terms of the atomic propositions that make them up. The requirements of the internal representation
of an atomic proposition are met by a token for the proposition (e.g., a pointer to the string
representing the proposition’s text). Prolog, on the other hand, is a mechanical theorem prover for
predicate logic, which attaches significance to the internal structure of the atomic propositions: for
example, the predicate name and the number and structure of its formal parameters.

It follows that an interpreter for Prolog must run its validation process over more complex data
structures than those used by an interpreter for propositional logic. This added complexity tends to
limit the performance of Prolog interpreters, certainly relative to interpreters for propositional
languages. The thrust of Prolog compilation is to combine the validation process and the clause
structure, so that the internal representation of each atomic proposition is the program that realizes
the validation process over the proposition. In essence, a compiled Prolog clause is an executable
description of the clause, which is why Forth is an ideal language for implementing and
experimenting with Prolog compilers.

This paper introduces a set of Forth words which form the basis of a Prolog Virtual Machine
(PVM). The instructions of the virtual machine are of two types: those that alter the flow of control
and those that denote the structures in Prolog clauses. Compilation to the virtual machine instructions
becomes a simple matter of composing a description of the clause, which can easily be done by hand.
Implementation of the virtual machine is a straightforward Forth programming task.

The compiler technology presented here is based on the simple compiler described by Bowen,
Byrd, and Clocksin [BOW83]. Code for the compiler (in Prolog) is given in an appendix, as is the
Forth code for the virtual machine. The compiler code may be of use to Forth programmers

Journal of Forth Application and Research Volume 4, Number 4
487



488 The Journal of Forth Application and Research Volume 4 Number 4

interested in building compilers in Prolog. The Forth code may be of use to anyone interested in
incorporating Prolog in Forth applications or experimenting with extensions of the Prolog language.
The elegance of the Forth solution to compiling Prolog should be of interest to both Forth and non-
Forth programmers alike.

Introduction to Prolog
Prolog is a simple language with a straightforward syntax and program structure (Figure 1).

A Prolog program is a set of procedures
A Prolog procedure is a set of clauses
- each clause is of the form "P :- Q1,Q2, ... Qn."
read: Pis true if
Q1is true and
Q2is true and ... and
Qnis true.
-if n =0 the clause is written as "P."
read: Pis true.
Some terminology:

P - Q1.Q2,Q3 .

| |l o I
head neck body foot

Figure 1. Prolog at a Glance (I).

Its declarative semantics is also straightforward. Each procedure represents the definition of a
predicate. For example, the sex of individuals may be specified by the predicates male and female,
as defined by the Prolog clauses:

male(isaac).
male(lot).
female(milcah).

Predicate definitions may be conditional, as in the following clauses:

son(X,Y) :- parent(Y,X),male(X).
grandparent(X,Y) :- parent(X,Z),parent(Z,Y).

The first clause is read as “X is a son of Y if Y is a parent of X and X is male.” The second clause
is read as “X is a grandparent of Y if X is a parent of Z and Z is a parent of Y.” The terms X, Y,
and Z in these definitions are logical variables, meaning they reference some unknown individual.
The scope of a variable reference is the clause it is used in.

What is unusual about Prolog is its procedural semantics—in particular, the search mechanism
underlying procedure invocation (which may result in backtracking) and the means for passing
information between procedures via unification (pattern matching). Prolog procedures execute much
like Forth or any other conventional language with the exception that any procedure call could
possibly invoke more than one procedure or even none at all. The Prolog machinery needs to search
through the candidate procedures. One way to visualize Prolog procedure execution is as a search
tree, or a proof tree in the case of successful search (Figure 2).




Compiling Prolog to Forth 489

- P, goal
(procedure call)

P clause
-Q1, head ~7
Q2,
Q3.

[\ /o /
s |\
:-R.

Q2.
Q3.

Figure 2. Proof Tree for the Prolog Procedure P.

Given the Prolog program on the left, successful execution of the procedure P, as invoked by the goal
:- P. can be represented by the tree on the right. Each upper half circle represents a procedure call
while the lower half circle represents a matching procedure. The Prolog machine must search through
the program, matching the call against candidate procedures. The expense of the search and the
associated pattern matching limit the Prolog performance. (The tree diagram has been called a
Ferguson diagram [VAN84].)

Prolog procedures can also have parameters (Figure 3). Unlike parameters in conventional
languages, Prolog parameters are neither strictly input nor output parameters. Rather, the role played
by a parameter depends on the procedure call, and one of the very unusual things about Prolog
parameters is that they can be both input and output. This aspect of parameters is a side effect of one
of the more interesting of the ideas about computing that have been realized in the Prolog language.
The idea is “call by description.” Each parameter of a procedure is a description, as is each argument
supplied by a procedure call. Descriptions can be more or less general depending on whether they
contain variables or not.

On procedure invocation, the argument terms of the caller (the goal) are matched with the
parameter terms of the called procedure. The pattern matching process (called unification) tests
whether two terms can be matched by binding some of the variables in the terms. In a sense,
unification is an attempt to find a view of the two descriptions under which they describe the same



490 The Journal of Forth Application and Research Volume 4 Number 4

thing. In Prolog, a successful unification of two terms results in the most general description covered
by both original descriptions, which may be a specialization of the originals (Figure 4).

Prolog procedures can have terms as parameters

A term may be:
- a constant
- a variable
- a structure

Constants are atomic objects

Variables stand for arbitrary objects
(by convention variable names begin with an uppercase letter)

Structures consist of a functor applied to terms as arguments
(eg. llp(a'b)ll )
Some terminology:

p (a,b)

| | t J
functor arity = 2

Figure 3. Prolog at a Glance (II).

argument
:-son(lot,A). terms

~
parameter [ tot ] A \
terms X Y
e

bindings

son(X,Y)
;- parent(Y,X),
male(X).

Figure 4. Procedure Invocation by the Goal :- son(lot,A).

Read the bindings a/b as “a is substituted for b.” Following the first successful unification of the goal
with the head of the procedure, the variable X in the procedure has been specialized to the constant
lot. The variable A in the goal may be specialized by subsequent unification of the subgoals with other
procedures.




Compiling Prolog to Forth 491

The pattern matching procedure involved in unification can be expensive, primarily because so many
cases need to be considered (Figure 5).

Constant Variable Structure

Cp Xp Sp
Constant Succeed Succeed Fail
Ca Ca=0Cp Xp = Ca
Variable Succeed Succeed Succeed
Xa Xa=Cp Xa = Xp Xa = Sp
Structure Fail Succeed Succeed
Sa Xp = Sa if *

* Sa,Sp have same functor and arity
corresponding arguments of 5a,5p unify

Figure 5. Cases Considered by the Unification Procedure.

Subscripts refer to the arguments passed by the caller (e.g., a structure Sa) and the parameters of the
procedure (e.g., a structure Sp). Variables are de-referenced prior to comparisons, meaning if a
variable has been bound, it is replaced by the bound value prior to comparison. Unification may
recurse on structures.

When the structure analysis done by unification is delayed until run time, as in an interpreter,
performance suffers, and, as was pointed out previously, searching for candidate matching clauses
on a procedure call can also be expensive. These two observations lead to the basic compilation
strategy for Prolog:

Strategy for Compiling Prolog

1) Specialize unification for each clause.

- unification involves an analysis of structure, so
move as much of the analysis as possible from
run-time to compile-time.

2) Reduce the set of candidate clauses.

- index clauses by their structure. Common indices
are main functor, arity and type of first parameter.

The focus of this paper is primarily the implementation of the first strategy because it is relatively
easy to see how to approach the implementation of the latter. For example, if all procedures with
the same main functor were chained together and accessed through the pfa of the main functor word,
there would be a substantial reduction in the search space.



492 The Journal of Forth Application and Research Volume 4 Number 4

The approach taken here is to break down the process of compiler building into two steps. In
the first step, a compiler is described that compiles Prolog to the instruction set of a Prolog Virtual
Machine (PVM). The PVM used here has several advantages. First, it is easy to understand and
implement because the set of instructions is small (there are only seven instructions). In addition,
the compilation procedure is straightforward because there is essentially a one-to-one correspondence
between clause structure and the object (PVM) code. Moreover, the PVM is a stack machine, which
reduces the complexity of the compiler because issues like register allocation need not be considered.
Finally, this PVM serves as a good introduction to the Warren Abstract Machine [WARS83] and the
current literature on Prolog compilation.

With the first step being the construction of the compiler, the second step becomes implementing
the PVM. This method is a common approach to compiler building, with speed being traded off
against the advantages of portability and more compact code.

Prolog Compilation Step 1. Compile Prolog to PVM Instructions

In explaining the compilation procedure, we delay considering full program compilation and
look first at the compilation of Prolog structures. The object of the compilation is ultimately to
compose a description of the Prolog structure using Forth words, which also happen to be
instructions of the PVM. The descriptive words that are needed are the names of the types of Prolog
terms —the unstructured terms such as variables and constants, and the structured terms like lists.
The term types suggest using PVM instructions named VAR and CONST for unstructured terms and
FUNCTOR for structured terms, with an instruction like POP used to indicate the termination of a
structured term description. These instructions will eventually be implemented as Forth words.

Given these four instructions, the procedure for compiling Prolog structures to PVM
instructions is simply to compose a description of the structure using CONST, VAR, FUNCTOR and
POP. Two examples of the compilation of Prolog structures follow. What is important to note is the
near one-to-one correspondence between the Prolog objects that comprise the structure and the PVM
instructions the structure compiles into.

male (isaac)

S

1 male FUNCTOR isaac CONST POP

Example 1. Compilation of the Structure male(isaac).

The PVM code describes the term male(isaac) as a structure with functor = male and arity = 1,
whose single formal parameter is a constant = isaac. The PVM instruction POP terminates the
description. Parameters to PVM instructions are indicated in the familiar Forth reverse Polish syntax.

For a technical reason, the object code does not reference logical variables by their names in
the source code. The reason is that variables occurring in a clause must be unique to each use of the
clause. Thus, there can be no unique reference to the variable “X.” With each procedure invocation,
new procedure variables are created and associated with the procedure’s stack frame. The compiler
renames variables as they appear in a clause—first variable, second variable, etc. —to be used as
indices into the area allocated for a procedure’s variables. Thus, variables are referenced by number
(index) in the object code.




Compiling Prolog to Forth 493

son (X,Y)

TN

2son FUNCTOR 1VAR 2VAR PO

Example 2. Compilation of the Structure son(X,Y).

The PVM code describes the term son(X,Y) as a structure with functor = son, arity = 2. The two
formal parameters of the structure are variables referenced by an index into an array of variables.

The procedure for compiling Prolog programs is quite similar to the procedure outlined for
compiling structures; however, there are some additional steps and some subtleties. The chief
additional step is marking transfer of control via the PVM instructions CALL, ENTER, and RETURN.
The chief subtlety is the difference between the way the PVM instructions operate in the head and
the body of a clause. In the head of a clause, the PVM instructions perform the operations of
unification, as specialized for that clause. In the body of a clause, PVM instructions must prepare
arguments for a procedure call. In other words, PVM instructions must operate in at least two
modes: “match” mode in the head of a clause and “arg” mode in the body. This fact previews some
implementation issues. The reason for mentioning it here is to explain the motivation behind the
different forms of description used in the head and body of a clause.

A second subtlety is the effect of clause indexing on the compilation of the head of a clause. It
is assumed here that clauses can be indexed by their main functor and arity: if the procedure son/2
(i.e., functor = son, arity = 2) is being invoked, then candidate clauses can be found by looking,
say, at the pfa of the word son and following a chain of pointers to the son/2 clauses. The whole
Prolog program does not need to be searched, and the functor and arity of the clause can be left off
the description of the clause head.

With these additional facts in mind, we first consider the compilation of Prolog clauses without
bodies —unit clauses.

Compilation of Unit Clauses

The chief differences between the compiled forms of structures and unit clauses are the
indication of transfer of control in the Prolog program with the word RETURN and the fact that the
functor and arity of the clause are not part of the object code emitted by the compiler. For example,
extending the description of the compilation procedure, the clause loves(bob,X). is compiled as
follows. First the compiler notes that its functor/arity is loves/2 (this indicates where to store the
compiled code) and that it has a single variable X and a single constant bob. Next a description of
the clause is composed as before:

loves (bob, X).

TN

bob CONST 1VAR RETURN

This is the program (description) for loves(bob,X). that is stored with the collection of clauses for
functor/arity = loves/2.



494 The Journal of Forth Application and Research Volume 4 Number 4

A more complicated example is the clause loves(son__of(ralph,Y),X). There are two variables,
one constant and a structure in this clause, and the PVM code emitted by the compiler is

2 son_of FUNCTOR ralph CONSTANT 1 VAR POP 2 VAR RETURN .

loves (son_of(ralph,Y),X).

VRN

2 son_of FUNCTOR ralph CONST 1VAR POP 2VAR RETURN

Lists may be represented by a structured term with functor/arity = cons/2 (Figure 6). The first
parameter of cons/2 references the first element of the list, and the second parameter of cons/2
references the rest of the list. Other representations of lists could be used to save both space and time
at the (slight) cost of increasing the PVM instruction set.

External Internal
Form Form
i nil
[al cons(a,nil)
fallll cons(a,nil)
[a.b] cons(a,cons(b,nil))
[a](b]] cons(a,cons(b,nil))
[a[b] cons(a,b)

Figure 6. Prolog List Syntax.

Prolog has several syntactic forms for lists. Generally, a list is enclosed by square brackets. The
empty list [ ] is a constant, and the character | separates the beginning of a list from the rest of the
list. There is a single internal representation of a list that, in the examples here, is a structure of
functor = cons, arity = 2.

As a final example of the compiled form of a unit clause, consider append([a,b],L,[a,b {LD.
This clause has only one variable. The PVM code emitted by the compiler is

2 cons FUNCTOR a CONST 2 cons FUNCTOR b CONST nil CONST POP POP
1 VAR

2 cons FUNCTOR a CONST 2 cons FUNCTOR b CONST 1 VAR POP POP
RETURN

The compiled code can be read as a description of the structure of the clause
append({a,b],L,[a,b |L]). With the PVM instruction set implemented in Forth, the description will
constitute the program that is executed when append/3 is called.

Compilation of Non-Unit Clauses

Compilation of non-unit clauses requires two additional PVM instructions: ENTER and CALL.
The word ENTER is the object code representation of the “neck” (:-) of a clause. Its chief purpose
is to switch the PVM execution mode and adjust certain pointers. The PVM instruction CALL takes
a reference to the clause to be called as its argument. Its purpose is to transfer control to the called
procedure and to save control information.




Compiling Prolog to Forth 495

CALL is compiled following a description of the procedure arguments. As mentioned earlier,
the compilation of a call is slightly different from the compilation of a structure. For example,
consider the clause son(X,Y) :- parent(Y,X),male(X). The head of the clause is compiled as for
unit clauses, the neck of the clause is marked in the object code by the instruction ENTER, and a
procedure call is compiled after a description of the arguments to the procedure.

son (X,Y) ..

1N

1VAR 2VAR ENTER

parent( Y, X) ,

N

2VAR 1VAR 2parentCALL

male( X) .

N

1 VAR 1 male CALL RETURN

As a final example, consider the clause append([X |L1],L2,[X | L3]) :- append(L1,1.2,L3).
The clause has four variables. The PVM code for this clause is

2 cons FUNCTOR 1 VAR 2 VAR POP
3 VAR
2 cons FUNCTOR 1 VAR & VAR POP
ENTER
2 VAR 3 VAR & VAR 3 append CALL RETURN

Prolog Compilation Step 2: Implement the Prolog Machine

Once the instructions of the Prolog machine have been named, and it is clear how to compile
Prolog clauses to Prolog machine code, what remains is the implementation of the machine. This
section describes the simulation of the Prolog machine in software.

There are three main components of the simulation. The first is the internal representation of
Prolog terms (e.g., constants, variables, and structures) and of references to these objects. The
second component concerns the structure of the stacks required to support Prolog computation. The
final component is the procedural semantics of the PVM instructions—what the instructions do. Side
issues like the memory map, implementation registers and scratch stacks will be touched on but in
less depth.

Internal Representation of Terms and References to Terms

First consider references to Prolog terms. As previously mentioned, there are three primitive
types of Prolog terms. One internal representation could be a 32-bit cell with the 2 high-order bits
indicating the type of the term and the remaining bits containing a pointer to the term (this is just




496 The Journal of Forth Application and Research Volume 4 Number 4

a generalization of the idea of pointer). The two fields of the reference are called the “tag” and the
“val,” following Clocksin [CLO85]. The following represents a sufficient set of references to
primitive objects:

Tag Val Purpose
1 pointer to a variable binding variable
2 pointer to a constant record constant
3 pointer to a structure record structured term

For the sake of efficiency, it may be desirable to increase the number of types of terms that can
be referenced. For example, it can be worthwhile to have a special type of reference for integers
even though integers could very well be referenced like any atom. Similarly, one might wish to
reference lists as distinct from general structures and unbound variables as distinct from bound
variables.

The simplest of the internal representations of terms is the representation of variables. Variables
and references to variables are identical. The val field of a variable reference points to a reference
to a Prolog term. An unbound variable is often indicated by a reference structure that has the tag
field of a variable and a val field that points to itself.

The internal representations of Prolog constants and structures are distinct from the
representations of references to these types of terms. Both constants and structures are represented
by different kinds of records, with distinct fields holding relevant information about the term. For
example, the record representing a structure holds the information about its functor and arity, as well
as references to its parameter terms.

Constant and structure representations are built in different areas of memory. Structures reside
exclusively in an area of memory called the structure stack. This stack constitutes the necessary
dynamic memory allocation required for Prolog computation and simplifies the garbage collection
problem because stacks grow and shrink with the computation.

Constants also reside in a special area of memory. For a simple Forth implementation of Prolog,
we can identify the Forth dictionary with the constant space (presumably Prolog would exist in a
separate Forth vocabulary). Each Prolog constant is then represented by a Forth word, the header
storing the name string and the parameter field storing other information. This particular
implementation scheme leaves the garbage collection of constants unresolved, which may be a
problem.

The Forth dictionary can also be the place where Prolog programs are stored. Indexing of
clauses in a particular procedure can be done through the main functor of the procedure. One simple
way to do this is to chain procedures by arity, with the pointer to this chain stored in the pfa of the
main functor word. Clause records can then be chained off the procedure records. With this
structure, procedure invocation begins with a search down the procedure links, and backtracking
resumes a search down the clause links.

Garbage collection of procedures may be necessary if there is significant data base manipulation
in a Prolog program. This could be accommodated here by allocating space for procedures from a
heap [DRESS].

In summary, there are four kinds of record structure:

Constant record (2 fields). The first field is the name string of the constant, and the second field is
a pointer to a chain of procedure records. For our purposes, a constant record is a Forth word, the
header containing the name string, link field, etc., and the first cell of the parameter field pointing
down the procedure chain (i.e., the Forth code used to build and initialize constant records is
CREATE @ , ).




Compiling Prolog to Forth 497

Structure record (3 fields). The first field is a pointer to the constant naming the functor, the second
field holds the number of arguments of the structure, and the third is a variable length field
containing the references to the formal arguments of the structure. Prolog structure records are built
by FUNCTOR descriptions in space allocated from the structure stack.

Procedure record (3 fields). The first field is a pointer to the next procedure in the chain having the
same functor but different arity, the second field holds the arity of the procedure, and the third field
contains a pointer to a chain of clause records. Space for procedure records can be allocated from
the Forth dictionary or from a heap.

Clause record (3 fields). The first field is a pointer to the next clause record, the second field holds
a number indicating how many variables are in the clause, and the third is a variable length field that
contains the code itself (effectively the Forth parameter field). Space for clause records can be
allocated from the Forth dictionary or from a heap.

Control Stack

P

goal
(procedure call)

Control

Args

Vars

clause
head ~7

Q1

Bel®

Control

Args

Vars

N
7Y 7T 7 A =
Q1 Q2 Q3
“ Control I

Args

Vars

Q2

Control

Q3

Args
Vars

[E— conre
Args
Q3 :

/ Vars

Figure 7. Structure of the Control Stack.

The control stack (right-hand side) constitutes a trace of the procedure calls during a Prolog
computation and therefore is a representation of the Prolog proof tree (left-hand side), with each stack
frame corresponding to a procedure call. The stack frame holds control information, procedure
arguments and the clause variables. In practice, it is possible to reclaim space on the control stack
during a computation.




498 The Journal of Forth Application and Research Volume 4 Number 4

Stack Structure

There are two main stacks in a Prolog machine. The first is the structure stack that holds any
temporary structures created during the computation. This is a straightforward stack requiring only
a pointer to its top. The second of the Prolog stacks (control stack) holds state information, the
arguments passed to procedures and procedure variables. This stack is essentially a linear version
of the proof tree traced out during a Prolog computation (Figure 7).

The Prolog stacks must generally be large relative to the usual Forth stacks because, in the case
of the structure stack, the stack is the mechanism for dynamic memory allocation, and, in the case
of the control stack, nondeterminism requires that all state information be saved in case backtracking
is necessary. Thus, a procedure return does not necessarily pop the control stack, and the stack can
grow quite deep.

Implementation of PVM Instructions

The following section describes in detail the workings of software simulations of the PVM
instructions. The first issue is execution modes. As alluded to previously, the PVM instructions
CONST, VAR and FUNCTOR operate in modes, the two main modes being “match” and “arg.” There
is a third mode called “copy” that is a variant of “arg” mode.

The instructions operate in match mode in the head of a clause, matching the parameters of the
clause with the arguments passed to the procedure on the control stack. Instructions operate in arg
mode in the body of a clause, placing arguments on the control stack prior to a procedure call.
Modes are switched by the instructions CALL, ENTER and RETURN (Figure 8).

Start

ENTER,
RETURN

Figure 8. Mode Switching in the Prolog Machine.

A procedure invoked from top level would begin executing in arg mode, placing arguments on the
control stack prior to a call. The call (PVM instruction CALL) switches the mode to match, and the
arguments are matched with the parameters in the head of the clause. If the match is successful, the
body of the clause is entered (PVM instruction ENTER), the mode is switched to arg, and arguments
are placed on the control stack prior to the first call in the body. The mode is also switched to arg
on a procedure return (PVM instruction RETURN). This is only strictly necessary when returning from
unit clauses.

CONST, VAR and FUNCTOR in Arg Mode

In the discussion to follow, operation of PVM instructions in each mode will be considered
according to the mode sequence pictured in Figure 8 —first arg mode, then match mode, and finally
copy mode. To begin, we look again at how a procedure call (goal) compiles, focusing now on what
the code does. For example, the goal parent(haran,X) compiles to the following PVM instructions.




Compiling Prolog to Forth 499

haran CONST % push reference to haran
n VAR % push reference to variable
2 parent CALL % call parent/2

If this procedure call is successful, the variable X is bound to the child of haran.

At this stage of execution, the PVM is in arg mode, and the effect of PVM instructions is to
place references to arguments on the control stack. An argument pointer is maintained to indicate
where the arguments are to go. The actions of PVM instructions in arg mode are described as
follows.

Description
Instruction Parameter(s) (arg mode)
CONST C: pointerto a push reference to C on control stack
atom advance arg pointer, continue
VAR I: index into dereference Ith variable
environment push result on control stack

advance arg pointer, continue

FUNCTOR F: pointer to an build F/N on structure stack
atom push reference to it on control stack,
push copy of arg pointer,
N: integer reset arg pointer to 1st parameter of F/N,
continue
POP none pop arg pointer, continue

Thus, in executing the goal parent(haran,X), the control stack has two argument references on it,
the argument pointer indicating the first of these, just before the procedure call is made (Figure 9).

control stack structure stack
Xo | v ] 1> Xo
Control
c —=> haran
v —=> Xo
arg

Figure 9. Stacks before CALL.

References to the arguments have been loaded on the control stack, and an argument pointer is set
to the first argument reference. The C in the tag field of the first argument indicates that it references
a constant; its val field points to the constant. The V in the tag field of the second argument indicates
that it references a variable; its val field points up earlier in the control stack to the original variable
reference. The fact that the val field of this earlier variable reference points to itself denotes that the
variable is unbound.



500 The Journal of Forth Application and Research Volume 4 Number 4

The PVM instruction sequence 2 parent CALL results in a search through the procedure records
from parent, looking for procedures whose arity is 2. If one is found, the execution mode is
switched to match, control is transferred to the procedure code, and the pattern matching process
begins. Transfer of control instructions are detailed later.

A more complicated example, one that involves the structure stack, is the code for the goal
derivative(sin(a),a,Y). If this procedure is successful, it results in the binding of the variable Y to
the derivative of sin(a) with respect to a.

1sin FUNCTOR % create sin/1, push reference, reset arg
pointer
a CONST % push reference to a
POP % restore arg pointer to derivative/3 from
sin/1
a CONST % push reference to a
n VAR % de-reference var, push reference

3 derivative CALL

Thus, in executing this goal, the control stack has three argument references on it just before the
procedure call is made, and the argument pointer indicates the first of these (Figure 10). The first
argument references a structure on the structure stack.

control stack structure stack
1 1
—% C ——-—} sin
Yo v -'—'"> Yo I 1
| C —> a
Contral
—+> a
———-} Yo

arg

Figure 10. Stacks before CALL.

References to the arguments have been loaded on the control stack, and an argument pointer is set
to the first argument reference. The S in the tag field of the first argument indicates that it references
a structure; its val field points to the structure, which is located in the structure stack. The structure
was built by the sequence of instructions 1 sin FUNCTOR a CONST POP operating in arg mode.

As before, the PVM instruction sequence 3 derivative CALL results in a search through the
procedure records from the word derivative, looking for any procedures whose arity is 3. If one
is found, the execution mode is switched to match, control is transferred to the procedure code, and
the pattern matching process begins.

CONST, VAR and FUNCTOR in Match Mode

The CALL instruction switches the execution mode of the PVM to match before transferring
control. In this mode, the PVM instructions of the compiled form effect the matching between the
argument and the parameters of the clause. For any instruction, if the argument is an unbound




Compiling Prolog to Forth 501

variable, the instructions immediately bind that variable to the appropriate term. For arguments that
are other than unbound variables, the actions of PVM instructions in match mode are described as
follows.

Description

Instruction Parameter(s) (match mode)
CONST C: pointerto a if arg not a constant, fail
atom else if arg not = C, fail
else

advance arg pointer, continue

VAR I:index into dereference Ith variable
environment if resultis an unbound variable,
bind to arg, advance arg pnter, continue
else if result type not = arg type, fail
else unify resultand argument
if unificiation not successful, fail
else advance arg pointer, continue

FUNCTOR F: pointertoan if arg not a structure, fail

atom else if functorof argnot = F
or arity of arg not = N, fail
N: integer else push copy of arg pointer,
reset arg pointer to 1st parameter of arg,
continue
pPOP none pop arg pointer, continue

As an example of match mode operation, consider the compiled forms of unit clauses
parent(haran,lot). and parent(abraham,isaac).

haran CONST % match 1st arg with haran
lot CONST % match 2nd arg with lot
RETURN

abraham CONST % match 1st arg with abraham
isaac CONST % match 2nd arg with isaac
RETURN

The operation of this code in realizing the unification is straightforward (Figure 11). If any of the
matches fail, backtracking is invoked.



502 The Journal of Forth Application and Research Volume 4

Number 4

control stack structure stack
Xo [ V] —1> X
[raran] 2 \
Control
C ———> haran
v —"> Xo

arg

Figure 11a. After CALL, before haran CONST.

Before the beginning of execution of the PVM code for the procedure, the control stack contains the
arguments, and an argument pointer indicates the first of them. The PVM code haran CONST will
check whether the first argument references the constant haran. In the case illustrated, the first
argument does reference haran so the match succeeds, the argument pointer is advanced, and

execution continues.

control stack structure stack
1 1
Xo | V| —> X

[naran[ x.
Control
C ~+=> haran
‘[} v —> X
arg

Figure 11b. After haran CONST, before Lot CONST.

The argument pointer now points to the second argument, which references an unbound variable. The
PVM code Lot CONST notes that the argument is an unbound variable and therefore binds it by

making it a reference to the constant lot.




Compiling Prolog to Forth 503

control stack structure stack

1

@ o | €] —+>10t

Control

C —=> haran
v —=> Xo

Figure 11c.  After Lot CONST, before RETURN.

Note that the variable referenced by the second argument has been replaced by a reference to the
constant lot. At this point the stack frame for the procedure could be reclaimed if no more alternatives
remained. Otherwise argument and control information must be maintained for this procedure in the
event that the computation backtracks to this point.

Two additional illustrations of unit-clause PVM code follow. The first example is the code for
the clause derivative(sin(X),X,co0s(X))., which states that the derivative of the sine of any argument
with respect to that argument is the cosine of that argument. This clause compiles to:

1sin FUNCTOR % match 1st argwithsin/1, reset argpointer

1 VAR % match 1st parameter of sin/1 with first var
pop % restore arg pointer to derivative/3 fromsin/1

1 VAR % match 2nd arg with first var

1 cos FUNCTOR % match 3rd argwith cos/1, reset arg pointer

1 VAR % match 1st parameter of cos/1 with first var
pPoP % restore arg pointer to derivative/3 from cos/1
RETURN

The second example, which contains nested structures, is the clause
derivative(**(sin(X),2),X,*(2,*(sin(X),cos(X)))).

This clause states that the derivative of the square of the sine of some argument is twice the product
of the sine and the cosine. Using infix notation the clause would read

derivative(sin(X)**2,X,2*sin(X)cos(X)).
The clause compiles to:

2 *%  FUNCTOR % match 1st arg with *%/2, reset arg pointer
1 sin FUNCTOR % match 1st parameter of **/2 with sin/1, reset arg pointer
1 VAR % match 1st parameter of sin/1 with first var

popP % restore arg pointer to **/2 fromsin/1
2 CONST % match 2nd parameter of **/2 with "2"

POP % restore arg pointer to derivative/3 from **/2
1 VAR % match 2nd arg with first var

2 * FUNCTOR % match 3rd arg with #/2, reset arg pointer



504 The Journal of Forth Application and Research Volume 4 Number 4

2 CONST % match 1st parameter of */2 with "2"
2 * FUNCTOR % match 2nd parameter of */2 with */2, reset arg pointer
1Tsin FUNCTOR % match 1st parameter of */2 with sin/1, reset arg pointer
1 VAR % match 1st parameter of sin/1 with first var

PoOP % restore arg pointer to **/2 fromsin/1
1 cos FUNCTOR 7% match 2nd parameter of */2 with cos/1, reset arg pointer
1 VAR % match 1st parameter of cos/1 with first var

POP % restore arg pointer to **/2 from cos/1

POP % restore arg pointer to *x/2 from *%/2

pPoP % restore arg pointer to derivative/3 from *%/2

RETURN

CONST, VAR and FUNCTOR in Copy Mode

The remaining complication that must be dealt with in respect to the operation of the PVM
instructions CONST, VAR and FUNCTOR is operation in copy mode. Copy mode is entered when an
argument is an unbound variable and the corresponding parameter is a structure. In this case, the
structure must be built and placed on the structure stack, and the variable reference must be replaced
by a reference to the structure. The process of building the structure is similar to what takes place
in the body of a clause except that, in this case, the structure building code is in the clause head —thus
the need for a different mode. The operation of the PVM instructions in this mode is described in
the following table.

Description

Instruction Parameter(s) (copy mode)
CONST C: pointertoa copy Creference to structure stack,
atom advance arg pointer, continue
VAR [: index into dereference Ith variable
environment if resultis an unbound variable,

create new unbound var on struct. stack
bind referenced var to new var

else

copy reference to structure stack

then advance arg pointer, continue

FUNCTOR F: pointer to an build F/N on structure stack
atom push copy of arg pointer,
reset arg pointer to 1st parameter of struct,
N: integer continue
POP none pop arg pointer, continue

As an example of copy mode operation, consider the clause
derivative(sin(X),X,cos(X)).

as called by
derivative(sin(a),a,Y).

Pictures of the stacks through execution are given in Figure 12.



Compiling Prolog to Forth 505

control stack structure stack
——~———§> C ———;> sin
Yo | V| —1= Yo 1 !
c —> a
Control
S
o ———E> a
Vv ‘—‘% Yo
arg Xo| V —+> X

Figure 12a. After CALL, before 1 sin FUNCTOR.

Before the beginning of execution of the PVM code for this procedure, the control stack contains the
arguments, and an argument pointer indicates the first of them. Because the clause contains one
variable, space has been allocated on the control stack following the procedure arguments, and the
variable has been initialized as unbound. The PVM code 1 sin FUNCTOR will check whether the
first argument references a structure with funcior = sin and arity = 1. In the case illustrated, the first
argument does reference such a structure so the match succeeds, a copy of the argument pointer is
saved, and the argument pointer is set to point to the first parameter of the structure.

control stack structure stack
1 1
~—— 1 C —> sin
Yo | v -t Y, L 1
’ | —> | C —> a
Control
S
C ~—-§> a
v —> Y,
Xo| V — Xo

arg

Figure 12b. After 1 sin FUNCTOR, before 1 VAR.

The PVM code 1 VAR will de-reference the procedure’s first variable and compare the result with
the reference pointed to by the argument pointer. At this stage of the computation, the variable is
unbound, and the argument reference is to the constant a. The variable is then bound to a (its
reference is changed to a). The argument pointer is advanced.



506 The Journal of Forth Application and Research Volume 4 Number 4

control stack structure stack
1 1
—-————E> C ———E> sin
Yo Vv -—--> Yo i 1
| 3 —> a
—>

Control

S

c —>

v —= Yo
Xe| C —> a

arg

Figure 12c. After 1 VAR, before POP.

The PVM code POP will restore the argument pointer to the value it had before FUNCTOR was
executed. Note that the cell allocated for the first variable of the procedure now references the
constant a.

control stack structure stack
1 1
—> 1 c —> sin
Yo \' ~—"> Yo I 1
’ C ——-E> a
Control
S
C ———E> a
v -—"> Yo
arg Xo| C —=> a

Figure 12d. After POP, before 1 VAR.

The PVM code 1 VAR will consult the term referenced at the memory location of the first procedure
variable and compare the result with the reference pointed to by the argument pointer. At this stage
of the computation, the variable is bound to the constant a and the argument reference is to the
constant a; therefore, the variable and the argument will match. The argument pointer is advanced.



Compiling Prolog to Forth 507

control stack structure stack
—> 1 -+ gin
Yo | V "‘“> Yo 1 1
| c —> a
Control
S
C ~——> a
arg —>| v ——> Yo
ol > e

Figure 12e. After 1 VAR, before 1 cos FUNCTOR.

The PVM FUNCTOR instruction will notice that the next argument references an unbound variable.
The mode will be switched to copy, and a structure will be constructed on the structure stack. The
structure is known to have functor = cos and arity = 1; therefore, space for the structure can be
allocated, and the corresponding structure reference can replace the unbound variable reference.

control stack structure stack
1 ]
——-—~E> C *——E> sin
Yo S ‘ I 1
C —=> a
= = L > (% 1> cos
Control 1 1
S
c —> a
v —=> Yo
x[c S

arg

Figure 12f. After 1 cos FUNCTOR, before 1 VAR.

Once space for the structure has been allocated and the variable bound, a copy of the argument pointer
is saved, and the pointer is reset to the first parameter position of the new structure. Following PVM
code will cause references to Prolog terms to be placed at the positions indicated by the argument
pointer.




508 The Journal of Forth Application and Research Volume 4 Number 4

control stack structure stack
—> | C —=> sin
Yo S ‘ I 1
C -———> a
= = C ___> cos
Controtl I 1
s C —+=> a
C —% a
v —> Yo
Xof € I a

Figure 12g. After 1 VAR POP.

The first variable is again de-referenced and copied to the position indicated by the argument pointer.
Execution of POP will restore the argument pointer to its value before execution of FUNCTOR and
change the execution mode back to match.

In closing this section, some final comments on references to Prolog terms and the binding of
Prolog variables are in order.

— The only Prolog terms that live in the control stack are variables.

- Structures live only in the structure stack. No subterm of a structure exists in the control
stack.

~ Variables in the control stack can be bound only to constants, terms in the structure stack,
or variables occurring earlier in the control stack.

Maintaining this discipline facilitates the restoration of the state of the Prolog computation in case
backtracking is required. The fact that structures live completely and only in the structure stack
means that they can be readily disposed of on backtracking simply by changing the pointer to the
top of the structure stack. Similarly, variable-variable binding is required to be from the most recent
variable to the least recent variable, both in the control and the structure stacks. This binding
discipline simplifies backtracking and means as well that the control stack frame for deterministic
procedures may be reclaimed without creating dangling pointers.

There must also be a mechanism that will note the binding of variables that have been created
before the most recent backtrack point because, on backtracking, the bindings of these variables must
be undone. The mechanism is a special stack called the trail. On binding a variable that lives earlier
than the most recent backtrack point, a pointer to the variable is pushed on the trail. The trail stack
pointer is part of the control information saved with a control frame, thereby providing the necessary
information to reset variables on backtracking.

Transfer of Control Instructions CALL, ENTER and RETURN

The instructions of the PVM that remain to be described are the flow of control instructions
CALL, ENTER and RETURN. Most of what these instructions do has been described previously and
is summarized in the following table.



Compiling Prolog to Forth 509

Instruction Parameter(s) Description
CALL F: pointerto an find first clause with functor F arity N,
atom if found, allocate space for variables,
copy control information to control stack,
N:integer if current clause has remaining alternatives,

update backtrack pointer,

copy backtrack info to control stack
set execution mode to "match”
transfer control to clause
else fail

ENTER none set execution mode to "arg”,
adjust stack frame pointers

RETURN none if deterministic, reclaim control stack frame
set execution mode to "arg"
transfer control back to caller

As an example of the compilation of a full clause, consider
son(X,Y) :- parent(Y,X),male(X).

which compiles to:

1 VAR % match 1st arg with first var
2 VAR % match 2nd arg with second var

ENTER % set execution mode to arg
2 VAR % de-reference then copy 2nd var to control stack
1 VAR % de-reference then copy 1st var to control stack
2 parent CALL % transfer control to parent/2 or backtrack
1 VAR % de-reference then copy 1st var to control stack
1 male CALL % transfer control tomale/1 or backtrack

RETURN % reclaim stack area, return control to caller

Several Prolog machine implementation registers are needed to support the computation (Figure
13). These registers contain pointers into the code, pointers to the control, structure and trail stacks,
a flag indicating the execution mode, and the argument pointer. Some of the registers are saved by
the instructions CALL and ENTER and then restored by RETURN and the backtracking mechanism.
CALL and RETURN always save and restore the program counter and a pointer to the control stack
frame of the current procedure. These are the first two registers in the table that follows. If the
procedure is deterministic, these are the only two registers saved. If a procedure is non-
deterministic —there are remaining alternatives (as indicated by the link on the code record)— CALL
saves the contents of all six registers in the table. These six constitute sufficient information to restore
the execution state on backtracking (Figure 14).




510 The Journal of Forth Application and Research Volume 4 Number 4

Register Description

RC pointer to code;
the return point in the calling procedure

RF pointer to the control stack;
stack frame of the calling procedure

BC pointer to a procedure;
next procedure on backtracking

BF pointer to the control stack;
last choice point

SS pointer to structure stack;
reset to this value on backtracking

TS pointer to trail stack;
reset variables on here on backtracking

Figure 13. Prolog State Registers.

B goal
- P. >
‘_D_ Q1 clause _-7
Q2,
Q3.
L ! V! V! \
I
Q1 Y Q1 S}
:-R.
Q1. T BF
R. @

Figure 14. Control Information Saved by CALL.

This figure indicates the main registers saved by CALL in the case of a call to a procedure that has
more than one clause. Also saved are the trail and structure stack pointers.




Compiling Prolog to Forth 511

Backtracking

Backtracking occurs on failure to find a procedure with the correct functor and arity (CALL),
on failure to match the arguments of a call and the parameters of a procedure (CONST, VAR,
FUNCTOR), or on explicit invocation via the predicate fail. The following events are triggered by
backtracking:

— Go back to most recent choice point (set current frame to contents of BF register).

— If there is only one remaining alternative clause, update the choice point (restore BF
from (new) current frame if necessary).

— Garbage collect the structure stack (restore SS from (new) current frame).

—  Re-initialize variables where necessary (restore TS from (new) current frame; unbind
any trailed variables).

— Transfer control to the next alternative clause (reset program counter from BC in (new)
current frame).

PVM Implementation in Forth

A Forth word set that implements the PVM instructions described here is given in Appendix
A. This code supplies most of the functionality required by the Prolog machine. The word set
described in the appendix has been built in MicroMotion MasterForth and runs on the Apple
Macintosh. Using colon words exclusively, the compiled Prolog runs over ten times faster than an
earlier Prolog interpreter in Forth [ODER7].

An optimized version of the PVM (see optimization below) has been ported to the NC4000P
Forth engine where it runs the naive reverse benchmark at 6K LIPS with a clock rate of 4 MHz.
(The Logical Inference Per Second measures, in effect, the procedure call rate.) At a clock rate of
10 MHz., it is estimated that this version would achieve performance equivalent to the fastest
compiled Prolog (Quintus Prolog) running on the VAX 11/780 [ODE86].

There are some minor differences between the PVM described here and the version simulated
by the Forth code in the appendix. The most significant difference is the interpretation of the
argument of the PVM instruction VAR. The Forth code for VAR uses a byte offset from the start of
the stack frame to locate a variable. By contrast, the PVM VAR instruction described above uses an
index into a table of variables. The latter convention makes the description of the PVM less
complicated; the former makes the PVM execution somewhat faster.

With some extra work, the PVM to Forth compiler (the word ASSERTZ in screen 40) could
calculate the byte offset from the table index. For example, in a clause with two parameters, the first
variable is allocated on the control stack after the control information (12 bytes) and the arguments
(2 arguments times 4 bytes/argument), so its offset from the start of the stack frame would be
12 + 8 = 20 bytes.

A second difference between the general PVM and the Forth simulation lies in the way
references to Prolog objects are tagged. Since a small model Forth is assumed in the simulation, all
pointers are 16 bits, and therefore the high order 16 bits of the object reference are free to be used
for the tag. This makes both tagging and testing tags very simple. A version for a large model Forth
would require more complicated code for these operations.

The Compiler

Basics
The Prolog compiler whose (Prolog) code appears in Appendix B accepts a restricted Prolog
syntax (Figure 15). The most important restriction of the syntax is that all predicates be expressed



512 The Journal of Forth Application and Research Volume 4 Number 4

in functional form. Extension of the compiler to accept other operator positions does require a
significant effort, although a straightforward path to the more general syntax would be to build a
preprocessor that transforms all predicates into functional form. The output of this program could
then be used as the compiler input, and the compiler per se would not have to be modified. There
are other parts of the usual grammar that are not recognized by the grammar used here (e.g.,
strings), but adding them requires only simple modifications.

<horn_cdause> :: = <atmf>.| <atmf> :- <atmfs>.

<atmfs> :: = <atmf> {,<atmf>}

<atmf> ::= <atom_name> | <atom_name> ( <args>)
<args> ::= <simple _term> | <simple__term>, <args>
<simple _term> :: = <atom_name> ( <args> )|

<variable> |

<constant> |

<list> |

(<simple _term>)|
{<conjunction>)

<conjunction> :: = <simple _term> , <simple _term>
<simple _term>, <conjunction>

<atom_name> :: = <lower case identifier>

<variable> :: = <identifier starting with uppercaseor”_">
<constant> :: = <atom_name> | <integer>

<list>:: = [ <simple_term> ]|

[ <simple_term> {, <simple _term> }| <list>]

Figure 15. Grammar Accepted by the Compiler.

The input to this compiler is a list of tokens for a single clause, terminated by the token . . The
tokens are the names of each constant, variable and functor, along with parentheses, quotes,
punctuation and the clause neck (:- ). The tokenizer is not described here, but it is relatively easy
to construct (see [CLO81], p. 86 ). Note that the grammar accepted by the compiler recognizes
structured terms with spaces between the functor name and the left parenthesis bracketing the functor
arguments. One approach to improving on this is to annotate the identifiers produced by the
tokenizer, thereby indicating to the compiler that an atom followed immediately by a ( is a functor
name.

The compiler is implemented as a grammar, using the grammar rule facility provided in most
Prologs [CLOS81]. The grammar consists of a collection of rules that define the strings of symbols
that are valid sentences of the language. Grammar rules may also provide for some analysis of the
sentence, often transforming it into a structure which is meant to clarify its meaning. The grammar
presented here analyzes the input string in this manner, transforming it into code for the Prolog
machine.




Compiling Prolog to Forth 513

Optimizations

The compiler and PVM have been simplified as much as possible for the purpose of exposition;
however, there are a number of modifications that will increase execution efficiency (at the expense
of increasing the complexity of the compiler and adding words to the Forth vocabulary). For
example, the code density could be reduced by putting all object references for each clause into a
table. Then, instead of each type word taking an object reference as its argument, it could just take
an index into the reference table. Type words could then be specialized by index, e.g., 1CONSTANT,
2CONSTANT, etc. The result would be that, in the code, only one cell is required for most primitive
object descriptions instead of two. The cost is the time required to extract the references from the
table.

The PVM instructions may be specialized in other ways. For example, the constant nil could
be described by a special word, such as CONSTNIL, thereby saving both time and space in the
reference table. A special functor description word for cons/2 is also desirable since lists are a very
common structure. Similarly, unnamed variables could be described by a special PVM instruction
such as VOID.

Specialization of variable descriptions also provides a number of opportunities to increase
efficiency. Instead of initializing variables on entry into a procedure, variables could be initialized
on first appearance in the clause and compiled to a PVM instruction called, for example,
FIRST.VAR. In match mode, such a special description would also save the check to determine the
binding of a variable. Consecutive unnamed variables might also be compiled to a single word of
one argument.

Finally, one might consider combining CALL~RETURN pairs into a single description and
compiling the cfa of special-purpose functions directly. Directions for further extensions to the word
set are suggested in [CLO85] and [WARS83].

Mixing Prolog and Forth

With the design described here, Forth and Prolog can be mixed freely because the Prolog
machine is simulated directly in Forth. Prolog computations can be launched from Forth and Forth
computations launched from Prolog. One way to mix the two would be to have the compiler
recognize a distinguished functor (possibly forth) that would cause the Forth code enclosed in the
following parentheses to be compiled in-line in the Prolog clause. For example, the definition of a
Prolog procedure that takes a list L and, as a side effect, prints the time taken for a naive reverse
of the list might look like:

test(L) :- forth(0 COUNT ! START.TIMER),
nrev(L,L1),
forth(STOP. TIMER COUNT a CR ." number of microseconds '").

This would compile to the equivalent Forth:

1 VAR ENTER

O COUNT ! START.TIMER

1 VAR 2 VAR 2 nrev CALL

STOP.TIMER COUNT @ CR ." number of microseconds " .
RETURN

With this approach, there is no overhead involved in mixed language programming; however, there
is some ugliness in the interface. Another possibility is to provide a facility for the declaration of
a Prolog interface to Forth. The syntax of such a declaration could be

forth__predicate(<Ferth word>,<Prolog predicate>)



514 The Journal of Forth Application and Research Volume 4 Number 4

where the predicate has +’s and -s in its argument positions to indicate input and output arguments
respectively. For example, the declaration

forth__predicate(' TEST ' ,test(+,+,-))

would specify that a call to the Prolog procedure test/3 would compile to code that would place the
first two arguments on the Forth data stack, execute the Forth word TEST, bind/compare the top
of the data stack with the third argument of the call and then either fail or succeed on the basis of
the comparison. The cost of this approach is the overhead involved in transferring values between
the Prolog control stack and the Forth data stack.

Conclusion

There are two major paths for extensions to the work reported here. The first leads to a very
attractive delivery vehicle for real-time expert systems— Forth for the procedural component, Prolog
for representation and reasoning. Forth’s strengths in real-time applications are well known. Thus,
the facility and efficiency with which abstract machines can be simulated in Forth makes the
language an ideal platform on which to deliver real-time knowledge-based systems. A marriage of
Prolog and Forth is currently being used for this purpose [PAL86]. Given a Forth engine, compiled
Prolog on such a platform competes in performance with anything currently available and is likely
to be superior in price-performance for a long time to come.

Extensions to the current work on the path leading to a fully formed delivery vehicle include
additional PVM instructions of the sort mentioned above under optimizations, better indexing of
clauses and more efficient use of control stack space. It would also be worthwhile to simulate the
Warren Abstract Machine [WARS83] in Forth to understand the trade-offs between machine
complexity and speed. Collaboration with Forth engine vendors could result in hardware features
supporting high level languages built on a Forth platform. The Forth engine could even evolve into
a Prolog engine.

The second path for extensions begins exploration of issues in computation only touched on by
commercial Prolog implementations. The general thrust of the exploration is the extension of
unification towards more sophisticated treatment of the objects to be unified. For example,
unification in standard Prolog is based solely on the syntactic structure of terms. The language is
untyped, and there is no notion of evaluation or co-reference (other than for logical variables). There
are, however, numerous illustrations of how type systems (mapping terms into a user-supplied type
lattice) can provide tremendous leverage in solving hard problems [WALS85]. Furthermore, absence
of evaluation or co-reference in the unifier means that the terms 2 + 2 and 4 won’t unify —not
satisfactory behavior in an intelligent system.

There are thus proposals to extend Prolog in these and other directions ((KOR83], [SHAS83]),
and such extensions can be added on top of standard Prolog. Nevertheless, extending the language
while keeping it efficient requires extending the underlying virtual machine. One of the interesting
facets of the research by Warren, Clocksin and coworkers on Prolog compilation is the emphasis
on reducing the problem of compiling Prolog to the problem of finding a concise clause description
language. One research question, then, is how to elaborate the clause description language to handle
the Prolog extensions in a natural way. The next question is how to build it.

This article is in the spirit of the earlier work on Prolog compilation, taking the position that
compiled Prolog is an executable clause description and arguing, therefore, that Forth is a good
choice for a PVM implementation language. Forth is an even better choice for compiler prototyping
of the type required for exploratory Prolog extensions. Therefore, both of the research questions,

developing descriptive locutions and simulating the underlying machine, can be tackled naturally in
Forth.



Compiling Prolog to Forth 515

Extension Effort Reference
Intelligent Backtracking small [KUMS86]
Sorted Logic small [WALS85]
Logic with Equality medium [KOR83]
Parallel Logic Programming large [CONB81]
Concept Unification large [KAHS86]

Figure 16. Areas of Prolog Machine Extension.

Some specific areas of extension are indicated in Figure 16 along with estimates of the
magnitude of the effort involved to extend the Forth code of Appendix A into an effective testbed.
Intelligent backtracking may be one of the more straightforward extensions to implement [KUMS86],
and there is ample scope to develop and test new ideas in this area. Sorts and Kinds are clearly a
powerful representation feature and might be implemented naturally by combining this Prolog with
the object-oriented systems already available in Forth. Logic with equality would likely require more
work than the former extensions, but the task is well bounded with significant theoretical issues to
explore. Parallel logic programming requires significant effort, but there may be interesting
applications to data acquisition and process control. Concept unification is the most ambitious
extension—the general idea involves simulating the capability that people exhibit, for example, to
unify the concepts of shoe and hammer in situations where the goal is to put a nail into the wall. Only
by trying to make some of these extensions work will enough insight be gained to understand their
value.

References

[BOWS3] Bowen, D. L., Byrd, L. M., and Clocksin, W. F. (1983). A portable Prolog compiler.
Proceedings of the Logic Programming Workshop '83, pp. 74-83. Albuteira, Portugal.

[CLO85] Clocksin, W. F. (1985). Design and simulation of a sequential Prolog machine. New
Generation Computing 3:101-20.

[CLO81] Clocksin, W. F., and Mellish, C. S. (1981). Programming in Prolog. Berlin:
Springer-Verlag.

[CONS81] Conery, J. S., and Kibler, D. F. (1981). Parallel interpretation of logic programs. In
Proceedings of the conference on functional programming languages and computer
architecture, pp. 163-70. ACM.

[DRE85] Dress, W. B. (1985). A FORTH implementation of the heap data structure for memory
management. J. Forth Appl. and Res. 3(3): 39-50.

[KAH86] Kahn, K. M. (1986). Uniform: a language based upon unifications which unifies (much
of) LISP, Prolog and ACT 1. In Logic programming. Functions, relations, and
equations, eds. D. DeGroot and G. Lindstrom, pp. 411-38. Englewood Cliffs, NIJ:
Prentice-Hall.

[KOR83] Kornfeld, W. A. (1983). Equality for Prolog. Proceedings IJCAI, pp. 514-19. Los
Altos, CA: Morgan Kaufmann.

[KUMS86] Kumar, V., and Lin, Y. (1986). An intelligent backtracking scheme for Prolog.
Technical report Al TR86-41, University of Texas at Austin.



516 The Journal of Forth Application and Research Volume 4 Number 4

[ODES86] Odette, L. L., and Wilkinson, W. (1986). Prolog at 20K LIPS on the Novix? FORML
conference proceedings. San Jose, CA: Forth Interest Group.

[ODES87] Odette, L. L., and Paloski, W. H. (1987). Use of a Forth-based Prolog for real-time
expert systems. II. A full Prolog interpreter embedded in Forth. J. Forth Appl. and
Res. , this issue.

[PAL86] Paloski, W., Odette, L., Krever, A. (1986). A Prolog in Forth for real-time expert
systems. J. Forth Appl. and Res. 4(2):307.

[PAR84] Park, J. (1984). MVP-FORTH expert system toolkit. Mountain View, CA: Mountain
View Press.

[SHAS83] Shapiro, E. Y. (1983). Logic programs with uncertainties: a tool for implementing rule-
based systems. Proceedings IICAI, pp. 529-32. Los Altos, CA: Morgan Kaufmann.

[VANS4] van Emden, M. H. (1984). An interpreting algorithm for Prolog programs. In
Implementations of Prolog, ed. J. A. Campbell. Chichester, England: Ellis Horwood.

[WALS5] Walther, C. (1985). A mechanical solution of Schubert’s steamroller by many-sorted
resolution. Artificial Intelligence 26(2): 217-25.

[WARS83] Warren, D. H. D. (1983). An abstract Prolog instruction set. Technical note 300, SRI
International, Menlo Park, CA.

Acknowledgements
My thanks to Bill Paloski and Martin Tracy for helpful comments on the manuscript.

Manuscript received August 1986.




Compiling Prolog to Forth 517

Appendix A: Forth Implementation of the Prolog Virtual Machine

Glossary
The Forth words used to simulate the Prolog machine (screens 29-35) are described below.

CALL Carity “atom - ) Takes an integer (arity) and a pointer to the pfa of a constant record and
searches the procedure records for a procedure with the specified arity. Backtracks if unsuccessful.
Otherwise, if there are multiple applicable clauses, backtracking information is saved: a pointer to
the next clause record, a pointer to the next most recent choice-point frame in the control stack and
the trail and global stack-pointers. Sets the execution mode to match. Also saves the top of the Forth
return stack in the next Prolog control stack frame and initializes the argument pointer to the first
argument position in the next control frame (the first memory location after the 12 bytes of control
information).

ENTER (- ) Commits to execution of the body of a clause. Sets execution mode to arg and adjusts
control stack pointers.

RETURN (- ) Indicates success exit. Gets the return pointer saved by CALL and pushes it on the
Forth return stack. Sets execution mode to arg and adjusts control stack pointers, reclaiming control
stack frames where possible.

CONST (“atom - ) Match mode: tests whether the next argument is a constant whose name is
given by atom. Backtracks if they don’t match; continues with Forth execution otherwise. Arg mode:
builds an argument with tag = 2 and val = “atom.

VAR (n - ) Match mode: de-references the variable specified by the input index and then, if the
variable is unbound, binds it to the argument; otherwise VAR tests whether the argument matches
the binding. Backtracks if they don’t match; continues with Forth execution otherwise. Arg mode:
copies the variable binding to the next argument position.

FUNCTOR (arity “atom - ) Match mode: tests whether the next argument is a structured term
with the specified arity, whose functor is named by atom. Backtracks if they don’t maich; otherwise
saves the argument pointer and resets it to point to the first argument of the structured term (i.e.,
to point to the first cell of the argument field of the structure record pointed to by the input
argument). Forth execution continues from this point. Arg mode: allocates space for a structure
record from the global stack and then sets the first two fields of the record (i.e., functor name and
arity). Builds an argument with tag = 3 and val = *structure. Saves the argument pointer and
resets it to point to the first cell of the argument field of the structure record. Forth execution
continues from this point.

POP (- ) Restores the argument pointer in both execution modes.



518 The Journal of Forth Application and Research Volume 4 Number 4

Appendix B: Prolog-PVM Compiler

/* o e I oI oo oo e e _= == pr i e == */
% COMPILER

% All args are output

% NVars is the number of vars in the clause

% Code is the object code

% Sent is a list of tokens, terminated by the token '."’

% The variable Sent is bound by the procedure ''read__in"'

compile__clause(Pred/Arity,Nvars,Code) :-
read__in(Sent),
horn__clause(Pred/Arity,Vars,[ 1,Cd,Sent,__),
nrev(Cd,Code),memberchkN(-1, Vars,-1,Nvars).

% Old is the input code sequence ([ ] here)

horn__clause(Pred/Arity, Vars,Old,[ 'RETURN' | New]) -->
atmf(Vars,01d,[__, _,__ [N1],Pred/Arity),
(I'"."],{New=N1}|
[":-"],atmfs(Vars,['"ENTER ' INI],New )).

% atmfs are terms that aren’t numbers or variables
% Argl: list of vars in the clause

% Arg2: input code sequence

% Arg3: output code sequence

atmfs(Vars,Old,New ) -=>
atmf(Vars,Old,N1,_),
(['.'"],{New=N1}|[','],atmfs(Vars,N1,New) ).

atmf(Vars,Old,[ *CALL ' ,Pred,0 | Old],Pred/0) -=>
atom__name(Pred).

atmf(Vars,Old,[ ' CALL ' ,Pred,Arity |N1] ,Pred/Arity) ==>
atom__name(Pred),[ ' ('],args(Vars,O01d,N1,0,Arity),[ ") '].

/¥ ===== == =mmm = ===== ===== %
% simple__term parses terms, lists and structured terms in

% functional form

% This is basically a case analysis and is meant to be

% deterministic, thus the cut

% Argl: Variable symbol list (difference list - built

% during compilation)

% Arg2: Input Code list:(input)
% Arg3: Output Code list (output)




Compiling Prolog to Forth 519

simple__term(__,__, ) -=>
['.'],!,fail.

simple__term(Vars,Old,[ 'POP' |N1]) =->
atom__name(Pred),[ ' ('],
args(Vars,[ 'FUNCTOR ', Pred, Arity | O1d],N1,0,Arity),[ ") '],!.

simple__term(Vars,Old,New ) -=>
variable(Vars,Old,New),!.

simple__term(__,0ld,New ) -->
constant(Old,New),!.

simple__term(Vars,Old,New ) -->
['('],(simple__term(Vars,Old,New ) ;
conjunction(Vars,0ld,New ) ),[ ") '],!.

simple__term(Vars,Old,New ) —->
list(Vars,Old,New ),!.

conjunction(Vars,Old,New ) -->
simple__term(Vars,OIld,N1),[", '],
(simple__term(Vars,N1,New ) | conjunction(Vars,N1,New ) ).

% args parses arguments

% Argl: - Arg3: see arguments for simple__term
% Argd: arg count (input)

% Arg5: arg count (output)

args(Vars,Old,New,Num0O,Numl ) -->
simple__term(Vars,Old,N1),
{','],{Num is NumO+ 1},args(Vars,N1,New,Num,Num1) |
{New = N1,Numl is Num0O+1}).

% char(N,Atom,M) - M is the N-th character of Atom
% ascii(M,N) - the ascii code for M is N

atom__name(Name) —->
[Namel],{char(l,Name,M),
ascii(M,N),ascii(a,.__a),ascii(z,__z),__a =< N,N =< _z},!.

variable(Vars,Old,[ ' VAR ' ,Num |Old}) ~->
[Var],{char(1,Var,L),ascii(L.,M),
(ascii('__",M) ;
ascii('A',__a),ascii('Z"',__z),_a =< MM =< _3z),
memberchkN(Var,Vars,0,Num)},!.



520 The Journal of Forth Application and Research Volume 4 Number 4

constant(Old,[Inst,X |Old]) -=>
atom__name(X),{Inst = "CONST'}]|
[X],{integer(X),Inst = 'INTEGER'}.

list(Vars,Old,New) ==>
['[","1'],{New=["CONST ' ,nil |O1d]} |
['['],simple__term(Vars,['FUNCTOR ',cons,2 | Old],N1),
list__tail(Vars,N1,New ) .

/* Auxiliary relations */

list__tail(Vars,Old,[ 'POP"', 'CONST ' ,nil | Old]) -->
['1'n

list__tail(Vars,Old,[ 'POP' [ New]) -->
[']'],simple__term(Vars,0ld,New),[']'].

list__tail(Vars,Old,New) -=>
[ ' 3 ']’
simple__term(Vars,[ ' FUNCTOR ' ,cons,2 | Old],N1) ,
list__tail(Vars,N1,New) .

% memberchkN

memberchkN(X,[X | _],M,N) :- Nis M+1,!.
memberchkN(X,[__|T1,L,N) :- M is L+ 1,memberchkN(X,T,M,N).

% naive reverse

nrev([X | LOLL) :-
nrev(L0,L1),concatenate(L1,[X],L).

nrev([ L,L D).

% concatenate

concatenate([ ],L,L).
concatenate([X | L.1],1.2,[X | L3]) :- concatenate(L1,L.2,L.3).



Compiling Prolog to Forth 521

Appendix C: Forth Implementation of PVM

SCRE 2
\ Primitive Macro Facility LLO 6/16/86
\ At compile time, copy the code over in-line
\ May not work for control structures
\  RUN-SYMBOLS 16 + @ returns the cfa of EXIT
: ;M [COMPILE] ; IMMEDIATE
DOES> BEGIN DUP @ DUP RUN-SYMBOLS 16 + @ = NOT
WHILE , 2+
REPEAT 2DROP ; IMMEDIATE

SCR# 3

\ Stack Definitions LLO 6/16/86
\ AARG.STACK is used for argument pointers

\ pushed by FUNCTOR, popped by PGP

CREATE STRUCTURE.STACK 6000 ALLOT \ structure stack
CREATE CONTROL.STACK 6000 ALLOT \ control stack

CREATE TRAIL 1000 ALLOT \ trail stack

CREATE “ARG.STACK 1000 ALLOT \ arg pointer stack
SCRE 4

\ Prolog Machine Registers LLO 6/16/86
\ VALUE is a multiple cfa word

\ access value by name (ie. X vs. X @)

\ store value indicated by IS ( ie. 2 IS X vs. 2 X 1)

@ VALUE CF \ Current Frame

@ VALUE NF \ Next Frame

@ VALUE BF \ Backtrack Frame

@ VALUE SS \ Structure Stack

@ VALUE TS \ Trail Stack

SCRE 5

\ Register to Register Operations LLO 6/16/86
: BF>CF  BF IS CF ; \ on backtracking

: NF>CF NF IS CF ;
: NF>BF  NF IS BF ;
: CF>NF CF IS NF

\ on procedure call
choice point call
\ on deterministic return

s ms owa -
-
o
=




522 The Journal of Forth Application and Research Volume 4 Number 4

SCR# 6
\ Context Save Operations
\ IP> and >IP correspond to R> and >R

M RP>Stack ( -- ) IP> NF [ ;M
: BP>Stack (n --) NF 2+ L
: CF>Stack ( == ) CF NF & + | ;
: BF>Stack ( == ) BF NF 6 + 1| ;
: §S>Stack ( == ) SS NF 8 + | ;
: TS$>Stack ( —- ) TS NF 10 + | ;
SCRE 7

\ Context Restore Operations
tM StackNF>RP ( -- ) IP> DROP NF @ >IP
:M Stack>RP ( -- ) IP> DROP CF @ >IP

Stack>BP ( ==~ n) CF 2+ @

Stack>CF ( -- ) CF & + @ IS CF

Stack>BF ( == ) CF 6 + @ IS BF

Stack>GS ( -- ) CF 8 + @ IS SS

Stack>TS ( == ) CF 18 + @ IS TS
SCR# 8

Temporaries, Equates, Tags
Temporary Variables

VALUE ARG

VALUE NVARS

VALUE ARITY

VARIABLE ARG.FLG

VARIABLE COPY.FLG

\ Equates

4 CONSTANT BYTES/CELL

12 CONSTANT BYTES/FRAME

Qe 8 .~ -

LLO 6/16/86

LLO 6/16/86
M\ ret from unit
M

~a wma wme wE wma wa oW

LLO 6/16/86

Argument Pointer
cache

cache

arg-match mode flag
copy mode flag

e

\ Tags - Here the tag is the high order 16 bits

1 CONSTANT VAR.TYPE
2 CONSTANT CONST.TYPE
3 CONSTANT FUNCT.TYPE

SCR# 9
\ Record Manipulation
\ Code records

: CODE>ARITY ( “code -~ n ) 2+ Cd

LLO 6/16/86

a
’

: CODE>NVARS ( ~code -~ n ) 3+ Cd ;

: CODE>PROC ( ~code -- addr ) &4 +

\ Procedure Records

.
1

: PROC>CODE ( “clause -- “~code ) 4 + 3 ; \ procedure > code

: PROC>ARITY ( “clause =- n ) 2+ 3 ;

\ procedure > arity



Compiling Prolog to Forth

523

SCRE# 10
\ Record Manipulation LLO 7/20/86
\ Structure Records

¢ STRUC>FUNCTOR ( ~functor -- “atom ) a; \ func > name

: STRUC>ARITY ( Afunctor -- arity ) 2+ @ ; \ func > arity
: STRUC>ARGS ( Afunctor -- “args ) & + ; \ func > args

\ Term References
: >TYPE ( term.ref -— type ) a ; \ ref > type
: >POINT ( term.ref -- “term ) 2+ @ ; \ ref > pointer
SCR¥ 11
Procedure Search LLO 6/16/86

P T

FIND.PROC ( n pfa == “code | flag )

Find a procedure of given arity and functor

arity = n, functor = pfa

Return FALSE if not found

Return pointer to first code record if found

BEGIN

@ DUP \ get pointer to clause records
IF 2DUP PROC>ARITY = \ compare arity

IF TRUE ELSE FALSE THEN \ if = then we're done

ELSE TRUE THEN \ if Llink = @ then we're done
UNTIL SWAP DROP DUP \ clean stack

IF PROC>CODE TRUE THEN ; \ convert to code record pointer

SCR# 12

\

Variable Manipulation LLO 6/16/86

: CREATE.UNBOUND.VAR ( addr == )

\

Create an unbound variable at addr

VAR.TYPE OVER 2! ; \ store

INIT.VARS C - )

create unbound variables in the control frame

NVARS 7?7DUP

IF  NF BYTES/FRAME +
ARITY BYTES/CELL * +  DUP ROT BYTES/CELL * + SWAP
DO I CREATE.UNBOUND.VAR  BYTES/CELL +LOOP THEN ;

RESET.VARS ( top.TS bottom.TS -- )

reset the variables on the trail stack

2DUP = IF 2DROP ELSE DO I @ VAR.TYPE OVER 2! 2 +LOOP THEN ;



524 The Journal of Forth Application and Research Volume 4 Number 4

SCR# 13

\

Saving State LLO 6/16/86

:M RESET.RP ( “code --)

\ Reset the return stack pointer
IP> DROP CODE>PROC >IP ;M
: SAVE.BACKTRACK ( “code -- “code )
\ Save appropriate information at a backtrack point
DUP a DUP BP>Stack \ get link to next code record
IF BF>Stack \ if a choice point, save old BF
NF>BF \ current frame is new backtrack frame
8§S>Stack TS>Stack \ save stack pointers
THEN ;
SCR# 14
\ Adjust Pointer to Next Frame LLO 6/16/86
: SET.NF ( “code -- “code )
\ reset NF register
CODE>ARITY BYTES/CELL * BYTES/FRAME + CF + IS BF ;
: RESET.NF ( == )
\ reset NF pointer
NF BYTES/FRAME +
ARITY NVARS + BYTES/CELL * +
IS NF ; \ adjust next frame pointer
: INIT.AARG ( == )
\ init ARG register
NF BYTES/FRAME + IS ARG ;
SCR# 15
\ General Backtracking LLO 6/16/86
: BACKTRACK ( -- )
\ Restore context
\ BF>CF \ make the BF current
\ Stack>BP DUP RESET.RP \ get pointer to code record
\ @ DUP BP>Stack 0= \ get link to next code record
\ IF Stack>BF THEN \ reset BF if this not choice pt
\ Stack>PF Stack>GS \ restore PF and SS pointers
\ TS Stack>T$ \ restore TS
\ TS RESET.VARS \ reset vars on the trail
\ INIT.MARG
\ SET.NF \ reset NF

.'"" not implemented " ;




Compiling Prolog to Forth 525

SCR# 16

\ Backtracking on Unification Failure

: RETRY ( == )

\ Restore context
CF \ get a copy of CF
BF>CF \ make the BF current
Stack>BP DUP RESET.RP \ get pointer to code record
DUP CODE>NVARS IS NVARS
@ DUP BP>Stack @= \ get link to next code record
IF Stack>BF THEN \ reset BF if this not choice pt
Stack>GS \ restore SS pointer
TS Stack>T$S \ restore TS
TS RESET.VARS \ reset vars on the trail

INIT.VARS INIT.MARG

IS CF ; \ restore CF
SCR# 17
\ Binding Trail ... 7/26/86

\ keep track of variable bindings that may need
\ to be reset on backtracking

: >TRAIL ( Avar == )
\ put a variable cell address on the trail
TS | TS 2+ IS TS ;

: >TRAIL? ( Avar -- Avar )

\ trail a variable if necessary
DUP BF U< OVER SS U< OR
IF DUP >TRAIL THEN ;

SCR# 18
\ Creating and Fetching a Binding .. 7/26/86
: BIND ( “term type “var -- )
\ bind a variable
>TRAIL? 21 ; \ smash variable cell

: >ULT.BINDING ( ~term@ -- “term?l )
\ completely dereference a variable binding
BEGIN
DUP >TYPE VAR.TYPE =
IF DUP >POINT OVER =
IF TRUE ELSE >POINT FALSE THEN
ELSE TRUE THEN
UNTIL ;

check for variable
check if unbound var
chase pointer if bound
not variable then done

Pl



526 The Journal of Forth Application and Research Volume 4 Number 4

SCR# 19
\ Save and Restore Arguments LLO 6/16/86

: POP.ARG ( == “term )

\ pop an argument off control/structure stack

\ leave term pointer on data stack
ARG DUP BYTES/CELL + IS ARG ;

: PUSH.ARG ( “term type =-- )

\ push an argument onto the control/structure stack
ARG 2! ARG BYTES/CELL + IS ARG ;

SCR# 20
\ Save and Restore Arg Pointers «o. 7/26/86
: PUSH.MARG ( addr =--)
\ save then reset argument pointer
2 “ARG.STACK ARG OVER @ ! +! IS ARG ;
¢ POP.MARG ( -- )
\ restore argument pointer
AARG.STACK -2 OVER +! @ @ IS ARG ;

: ARGETYPE ( -- “term type )
\ pop an argument, dereference it if necessary, return with type
POP.ARG >ULT.BINDING DUP >TYPE ;

SCR# 21
\ Unify Variable (match mode) LLO 7/2B/86
\ see VAR, screen 33
! UNIFY.VAR ( Avar -- flag )
\ unify the variable with an argument
ARG&TYPE VAR.TYPE = \ get the argument
IF 2DUP U> IF SWAP THEN 2+ ! \ bind variables
ELSE 28 ROT BIND THEN TRUE ; \ bind it to the variable

SCR# 22

\ Unify Constant ... 7/22/86
\ see VAR, screen 33

¢ UNIFY.CONST ( “const -- flag )

\ unify the constant with an argument

ARG&TYPE CASE \ get the argument
VAR.TYPE
OF >R 23 R> BIND TRUE ENDOF
CONST.TYPE
OF >POINT SWAP >POINT = \ compare pointers
IF TRUE ELSE FALSE THEN \ succeed if pointers match
ENDOF
SWAP FALSE ENDCASE ; \ nothing else recognized



Compiling Prolog to Forth

527

SCR# 23
\ Unify Structure
\ see VAR, screen 33

UNIFY.FUNCT ( ~functor -- flag )

ARGETYPE CASE
VAR.TYPE OF >R 23 R> BIND

FUNCT.TYPE OF .'" Not Implemented
SWAP FALSE ENDCASE ;

14

SCRE# 24
\ Build a Term Reference (arg mode

REF>ARG ( “term -- )
builds an argument from a term r
DUP >TYPE VAR.TYPE = \

LLO 7/20/86

unify the functor with an argument

\ get the argument
TRUE ENDOF
' TRUE ENDOF

) LLO 7/20/86

eference
check for variable

IF VAR.TYPE \ make a new variable
ELSE 22 THEN PUSH.ARG ; \ otherwise copy

: VAR>ARG (n == )

\ builds an argument from a variable reference
COPY.FLG @

IF NF ELSE CF THEN +

\

>ULT.BINDING REF>ARG ; \
SCR# 25
\ Build a Structure Record (copy,

COPY.FUNCT ( arity “atom -- )
build a functor record on the st
-1 ARG.FLG +!

OVER BYTES/CELL * &4 +
SS DUP ROT + IS SS
DUP & + PUSH.”ARG

21

Pl

.
1

SCR# 26
\ Match a Structure (match mode)
\ see FUNCTOR, screen 35
: MATCH.FUNCT ( arity “atom “term
\ match functor with an argument
\ ARG is reset if functor (name )
\ remainder of match is handled by
>POINT
DUP STRUC>FUNCTOR ROT =
IF DUP STRUC>ARITY ROT =
IF STRUC>ARGS PUSH.”ARG TRUE \
ELSE DROP FALSE THEN
ELSE 2DROP FALSE THEN

\
\
\

\

.
r

get address of variable
get binding for argument

arg modes) LLO 7/20/86

ructure stack

increment the counter
compute # of bytes in record
allocate space

reset arg pointer for rest
fill head of functor record

LLO 7/20/86
-- flag )

and arity match

code in clause head

get pointer to record

check functor match

check arity match

reset arg pointer, return T

return false if no match



528 The Journal of Forth Application and Research Volume 4 Number 4

SCR# 27

\ Copy a Structure (copy mode) LLO 7/2@/86

\ see FUNCTOR, screen 35

: MATCH.VAR ( arity “atom “Avar -- flag )

\ Builds a structure record and binds it to the variable

\ The structure args are built by the remainder of the head code
COPY.FLG ON \ copy variable from NF not CF
SS FUNCT.TYPE ROT BIND \ bind the variable to funct rec
COPY.FUNCT TRUE ; \ set to copy functor, return T

SCR# 28

Prolog Virtual Machine Instructions

Note: VAR takes a byte offset from the start of a frame
(base address) to compute the address of the variable.
ARG.FLG = @, COPY.FLG = @ indicates match mode

ARG.FLG not @, COPY.FLG = @ indicates arg mode

ARG.FLG not @, COPY.FLG not @ indicates copy mode

in copy mode, nesting is handled by decrementing ARG.FLG
at the start of a structure, and incrementing on exit
(via POP).

COPY.FLG is used to indicate which frame pointer (CF or NF)
should be used for the base address of the variable.

i i

SCR# 29
\ Prolog Machine Instruction CALL LLO 6/16/86
: CALL {( n cfa == )
\ Call a Prolog procedure
ARG.FLG OFF
FIND.PROC
IF DUP CODE>NVARS IS NVARS
DUP CODE>ARITY IS ARITY
INIT.VARS RP>Stack
SAVE.BACKTRACK

swith mode to "match"

get pointer to procedure rec
cache NVARS

cache ARITY

init vars and set up stack

Pl P g

INIT.2ARG \ set argument pointer
4 + >IP EXIT \ pass control to procedure
ELSE BACKTRACK THEN ; \ backtrack if no procedure
SCR# 30
\ Prolog Machine Instruction ENTER LLO 6/16/86

: ENTER ( == )
\ Enter a procedure and begin execution of the body

ARG.FLG ON \ switch mode to '"arg"

COPY.FLG OFF

CF>Stack \ adjust frame pointers

NF>CF RESET.NF \ adjust next frame pointer
INIT.”ARG ; \ set arg pointer for next call



Compiling Prolog to Forth

529

SCR# 31
\ Prolog Machine Instruction ENTER LLO 6/16/86
: RETURN ¢ -- )
\ Return from a procedure
ARG.FLG @ \ check mode
IF Stack>RP CF BF U>

IF CF>NF THEN \ reclaim if not backtrack pnt
Stack>CF \ adjust frame pointers
ELSE StackNF>RP BF NF = \ if ret from unit clause
IF CF>Stack \ save parent frame pointer
RESET.NF \ reset frame pointer
THEN
THEN ARG.FLG ON \ turn off matcher
INIT.AARG ; \ set arg pointer for next call
SCR# 32
\ Prolog Machine Instruction CONST LLO 6/16/86

: CONST ( ~atom - )
\ match or copy a constant
ARG.FLG @
IF CONST.TYPE PUSH.ARG
ELSE ARG&TYPE VAR.TYPE =
IF CONST.TYPE SWAP BIND
ELSE >POINT = NOT
IF IP> DROP NF BF =

push arg in arg mode
get first argument

if variable, bind it
otherwise must be EQ

-

IF RETRY \ retry if new call
ELSE BACKTRACK THEN \ backtrack if not
THEN
THEN \ else continue
THEN H
SCR# 33
\ Prolog Machine Instruction VAR
: VAR ( n --)
ARG.FLG @
IF  VAR>ARG \ get binding for argument
ELSE NF + >ULT.BINDING \ get the variable bindings
DUP >TYPE CASE \ case analysis on type

VAR.TYPE  OF UNIFY.VAR  ENDOF
CONST.TYPE  OF UNIFY.CONST ENDOF
FUNCT.TYPE  OF UNIFY.FUNCT ENDOF

ENDCASE NOT

IF R> DROP NF BF = \ if match not successful
IF RETRY \ retry
ELSE BACKTRACK THEN \ or backtrack

THEN

THEN ; \ build an argument



530 The Journal of Forth Application and Research Volume 4 Number 4

SCR# 34
\ Prolog Machine Instruction POP LLO 7/20/86
: POP ( --)
\ pop from a FUNCTOR
POP."ARG \ restore argument pointer
ARG.FLG @ \ Look for '"arg" mode
IF 1 ARG.FLG +! THEN ; \ decrement counter
SCR# 35
\ Prolog Machine Instruction FUNCTOR LLO 7/28/86

: FUNCTOR ( arity “atom -- )
\ Compiler object indicating a structure
ARG.FLG @
IF SS FUNCT.TYPE PUSH.ARG  COPY.FUNCT
ELSE ARG&TYPE CASE
VAR.TYPE OF MATCH.VAR  ENDOF
FUNCT.TYPE OF MATCH.FUNCT ENDOF
FALSE SWAP ENDCASE
NOT IF R> DROP NF BF =
IF RETRY ELSE BACKTRACK THEN
THEN
THEN ;

SCR# 36
Support Routines

ASSERTZ is the PVM to Forth Compiler.

It requires as parameters the number of variables

in the clause, the arity of the clause, and the pfa

of the clause functor.

IT the PVM word set were extended, with different words

for instructions in the head and body, much of the compilation
to the extended word set could be handled by ASSERTZ, since

it can tell the difference between the head and body of a
ctause. Thus the Prolog-PVM compiler could stay simple.

P i il g

SCR# 37
\ Prolog Print Words
DEFER PRINT.TERM
: PRINT.CONST ( “const =-- )
\ print a constant
>POINT BODY> .ID ;
: PRINT.VAR ( Avar --)
\ print a variable
>POINT BASE @ >R
ASCII _ EMIT HEX U. R> BASE ! ;



Compiling Prolog to Forth

531

SCR# 38

: PRINT.FUNCT ( ~term -- )
\ print a structure

>POINT DUP @ BODY> .ID ASCII (

EMIT

2+ DUP 2+ SWAP 8 BYTES/CELL * OVER + SWAP
DO I PRINT.TERM BYTES/CELL +LOOP ASCII ) EMIT ;

: <PRINT.TERM> ( “~term -- )
\ print a Prolog term
>ULT.BINDING DUP >TYPE CASE

CONST.TYPE OF PRINT.CONST ENDOF
ENDOF
FUNCT.TYPE OF PRINT.FUNCT ENDOF

VAR.TYPE OF PRINT.VAR
' <PRINT.TERM> IS PRINT.TERM
SCR# 39

\ Auxiliary Words
ICODE.DATA ( nvars arity -- )

ENDCASE ;

LLO 6/16/86

\ pack the number of variables (nvars) and arity

\ then enclose
256 * + ,

\ traverse links to end

\ arity is in high order byte
: \LINK ( start.addr -- end.addr )

BEGIN DUP & IF & FALSE ELSE TRUE THEN UNTIL ;

SCRE 40
\ PVM to Forth Compiler

: :ASSERTZ ( nvars arity pred -- )

\ add a clause to the Prolog data
2DUP FIND.PROC
IF \LINK
HERE SWAP | @ ,
DROP !CODE.DATA
ELSE \LINK
HERE SWAP ! O ,
DUP , HERE 2+ ,
@ , 'CODE.DATA
THEN STATE ON ;
: ;ASSERT ( -- )
STATE OFF ; IMMEDIATE

Pl i

g

LLO 6/16/86

base

find proc record

if found, get last clause rec
install links

install nvars, arity

if not found get last proc
install Llinks

install arity and link to clause
set clause link

compile remainder of input

turn off compilation



532 The Journal of Forth Application and Research Volume 4 Number 4

SCR# 41
\ Initialization words for test routines LLO 6/16/86
: INIT.MARG.STACK
\ init argument pointer stack
AARG.STACK DUP 2+ SWAP ! ;
: INIT.STACKS
\ initialize stacks prior to CALL
STRUCTURE.STACK IS SS
TRAIL IS TS
CONTROL.STACK IS CF
CF IS NF @ IS BF
ARG.FLG OFF COPY.FLG OFF
CONTROL.STACK 3000 @ FILL INIT.AARG.STACK ;
: TEST INIT.STACKS CR ;

SCR# 42
\ Test Procedures
\ Create Dictionary Entries for all Test Words

CREATE REV 0 , CREATE APPEND O ,
CREATE NIL O , CREATE cons 0 ,
CREATE bob 0 , CREATE art e, CREATE fred 0 ,

SCR# 43
\ APPEND and REV (Note arguments of VAR)
1 3 APPEND :ASSERTZ NIL CONST 24 VAR 24 VAR RETURN ;ASSERT
4 3 APPEND :ASSERTZ 2 cons FUNCTOR 24 VAR 28 VAR POP
32 VAR
2 cons FUNCTOR 24 VAR 36 VAR POP
ENTER 28 VAR 32 VAR 36 VAR 3 APPEND CALL
RETURN ;ASSERT

@ 2 REV tASSERTZ NIL CONST NIL CONST RETURN ;ASSERT
4 2 REV :ASSERTZ 2 cons FUNCTOR 28 VAR 24 VAR POP 28 VAR
ENTER 24 VAR 32 VAR 2 REV CALL
32 VAR
2 cons FUNCTOR 20 VAR NIL CONST POP 28 VAR
3 APPEND CALL
RETURN ;ASSERT
SCRE 44

\ Test of Append
\ use: TEST @ TEST1 CALL
\ check result with CONTROL.STACK 12 + PRINT.TERM
CREATE TESTYT 0 ,
\ append(lbob,fredl,lart]l,L).
1 @ TEST1 :ASSERTZ ENTER
2 cons FUNCTOR bob CONST
2 cons FUNCTOR fred CONST NIL CONST POP POP
2 cons FUNCTOR art CONST NIL CONST POP
12 VAR 3 APPEND CALL RETURN ;ASSERT



Compiling Prolog to Forth

533

SCR# 45
\ Test of REV
\ use: TEST @ TESTZ CALL
\ check result with CONTROL.STACK 12 + PRINT.TERM
CREATE TESTZ2 0@ ,
\ rev([lbob,art,fredl,).
1 @ TEST2 :ASSERTZ ENTER
2 cons FUNCTOR bob CONST
2 cons FUNCTOR art CONST
2 cons FUNCTOR fred CONST NIL CONST
POP POP POP
12 VAR 2 REV CALL RETURN ;ASSERT



534 The Journal of Forth Application and Research Volume 4 Number 4




