
Proceedings of the 1987 Rochester Forth Conference 101

A High Performance VME Processor Card
When 32-Bit Super-Micros Can't Cut It

Phil Burnley
Xycom, Inc.

Northampton, England
and

Thomas Harkaway
Xycom, Inc.

Saline, Michigan

Abstract

ùsing High Level Languages (HLL) for demanding real time applica-
tions is usually not possible on conventional microprocessors;
Typically the HLL is only used to program the user interface portion
of the application while assembly language is used for the time
cr i tical portions. Because the advantages of HLI, programming are so
great, various approaches to this problem are taken including the
use of multiple processors in the same system and using more
expensive higher performance processors than the application really
requires. This paper discusses an alternate approach; a VMEbus
processor which was designed for programming real time applications
completely in a HLL.

1. INTRODUCTION

The benefits of programming in High Level
Languages (HLLs) are many and well known,
yet despite the widespread availability
of HLLs for conventional processors, in
many applications, engineers are still
forced to undertake substantial develop-
ments entirely in assembler language.
This is especially true in demanding
real-time applications where execution
speed is of the utmost importance and
even the most efficiently compiled HLL
cannot compete wi th carefully hand-coded
assembler. Furthermore, real-time
applications often require input/output
handl ing and inter r upt serv icing,
features that are poorly supported in
most HLLs.

It has been widely accepted as a fact-of-
life that a program written in a HLL will
incur a performance penalty, against the
same program coded in assembler, but why
should this be the case? Is it possible
that the architecture of conventional
processors is imposing a handicap upon
HLLs which could be avoided with an
al ternat ive archi tecture?
This paper answers these questions by
outlining the rationale behind a new
two-stack architecture that has found
commercial realization in the XYCOM XVME-
616. This processor was deSigned for
programming real-time application in
HLLs. The three design objectives were:
1) Develop an architecture optimized

for the execution of HLLs

2) Very high speed

3) Micro-programmable to allow the
creation of Application Specific
CPUs

2. HLLs ON CONVENTIONAL PROCESSORS

An analysis of code generated by compil-
ers for procedural high level languages,
such as Pascal and C, quickly reveals a
reliance at runtime upon one or more
stack (LIFO) data structures. Stacks are
needed for:

storage of local variables so that,
during recursion, a new set of
locals may be easily created
storage of subroutine return
addresses to facilitate procedure
calls and returns

temporary storage during execution
of complex ar ithmetic expressions.

It is easy to show that procedural HLLs
which support local variables and recur-
sion cannot be executed at all without at
least one stack data structure. As a
result it is not surprising to discover
that compiler writers often write their
compilers for a 'virtual stack machine',
as embodied for example in Pascal P-code.

Conventional, register based, processors,
such as the 8086 and 68000 families, do
not have integral hardware stacks and, as
a consequence, must implement these
essential data structures as reserved
areas of the main memory. These areas
are accessed in a simple LIFO manner,
controlled by dedicated memory address
registers within the CPU acting as stack
pointers. It becomes clear in analysis
of HLL program execution that this method
of data organization is the principle
cause of the poor performance of HLLs on
these processors.

Most conventional processors implement
special instructions such as PUSH

102 The Journal of Forth Application and Research Volume 5 Number I

(decrement stack pointer and store data
in location addressed by stack pointer)
and pop (fetch data from location
addressed by stack pointer and increment
stack pointer) but these instructions do
not overcome the overhead created by the
large number of addresses and data that
must be transferred between the processor
and the main memory where the stack
structure exists.
This can be easily demonstrated by the
following examples.

2.1 Local Var iables

The treatment of local variables on a
conventional processor (F igure 1) is
illustrated by consider ing the following
fragment of C code:

int a,b,ci
a=b+c I

The three variables a, b, and care
locals therefore must be stored within a
stack data structure in main memory. The
arithmetic addition of band c can only
be carried out by the hardware Arithmetic
Logic Unit (ALU), within the CPU, and so
band c must be moved to the ALU v ia one
or more of the CPU registers. After the
addition the result, a must be moved back
from the CPU to the stack I a sequence of
operations achieved by the following
68000 assembler code,

MOVE b' (SP) ,DO
ADD CL (SP) ,DO
MOVE OO,a' (SP)

This sequence assumes that the locals a,
band c are offset from the top of stack
by a', b' and c'. The time taken to
execute this sequence is typically 36
clock cycles and 9 data bus transfers on
a 68000 processor. At least one third of
this effort is wasted transferring the
data between the stack and the ALU.

2.2 Subroutine Call and Return

A similar performance penalty is incurred
in the execution of subroutine calls and
returns. Before loading the program
counter (PC) 1n the CPU with the address
of the start of the called subroutine the
current value of the PC must first be
pushed onto a return addres.s stack in
main memory. At the end of the sub-
routine the return address must be popped
from the return stack in main memory into
the PC in the CPU. The physical separa-
tion of the program counter and the
return address stack imposes a penalty of
2 main memory transfers just as the
separation of the ALU and the local
var iable stack imposes penalties in the
previous example.

The 68000 requires 34 clock cycles and 5
data bus transfers for the BSR/RTS pair
of instructions. The equivalent call and
return pair in a stack architecture
machine would only need 2 main memory
tr ansf er s.

The execution speed of a HLL program is
known to be particularly sensitive to the
time required for subroutine call and
return. A program of average complexity
on a conventional processor will often

spend 25% of runtime simply exec~ting
calls and returns due to the frequency of
these instructions and the great length
of time they take to execute. This can
become worse for complex systems because
of the increased number of subroutine
nesting layers employed. An improvement
in this area alone will dramatically
improve the performance of HLL programs.

3.A TWO STACK ARCHITECTURE

The examples reviewed above, and others,
suggest that the conventional register
architecture is far from ideal for the
execution of procedural HLLs and that a
substantial performance advantage may be
gained by implementing one or more stack
data structures directly in hardware
within the CPU.

Examination of the relative merits of
one-stack versus two-stack architectures
strongly favors a two-stack approach with
one stack coupled to an ALU and reserved
for local variable storage (the Arith-
metic Stack), and the other coupled to
the PC and reserved for return addresses
(the Return Stack). The advantage of a
two-stack approach is best illustrated by
examining the requ irements of parameter
passing, via a stack, to a subroutine,as
would be implemented in a HLL program.
In a one-stack machine parameters placed
on the Top-of-Stack (TOS) will no longer
be on TOS after the subroutine call, but
will be buried underneath the subroutines
return address on the same stack. In a
two-stack machine local var iables and
subroutine operands will retain the same
relative position on the arithmetic stack
despite any number of nested subroutine
calls, and therefore the code to access
locals can be simpler and more efficient.

A two-stack architecture with main memory
is shown in Figure 2. The CPU now has
two main units, the Arithmetic Stack Unit
(ASU) and the Return Stack Unit (RSU).
The ASU consists of a hardware stack with
its own stack pointer (SP) and an ALU.
The ALU is deliberately shown inside the
arithmetic stack since it is blended
within the stack in a manner that mini-
mizes data movement between the stack and
the ,ALU. For instance, TOS operands are
always available at the inputs to the
ALU. Thus the Arithmetic Stack Unit is
neither just a stack nor just an ALUI
hence it's terminology. Likewise the RSU
consists of a hardware stack, with it's
stack pointer (RP) and the program
counter which points to the program code
in the main memory, which for historical
reasons, is known as the input pointer
(IP) .

Al though the ASU and. RSU are both part of
the CPu, when coupled with main memory as
shown in Figure 2, the complete machine
has three independent memory structures,
each fulf ill ing a spec if ic functional
requirement of HLLs.

The ASU for local var iables and
temporary storage

The RSU for subroutine and interrupt
return addresses

Main memory for program code and
global (static) var iables.

Proceedings of the 1987 Rochester Forth Conference 103

Not only does this architecture substan-
tially reduce the number of data trans-
fers from main memory during HLL program
execution but the three memory structUres
may operate in parallel so that, for
example, ar i thmetic on local var iables
may be carried out at the same time as a
subroutine call.

4. PROGR~IMING A TWO STACK MACHINE

The choice of an assembly language for
the two-stack machine descr ibed above
should be optimized for the execution of
HLLs, in this case optimized for the
execution of C code, as the hardware is
optimized for the execution of HLL
programs. Why not base the assembly
language on an HLL in the first place?

As described before, several procedural
HLLs conceive of a virtual stack machine
in their implementation. The closest
match between a true HLL and the physical
archi tecture descr ibed here is provided
by FORTH which, in addition, provides a
highly interactive programming and
development environment that is ideal for
the rapid development of real-time
applications. There are some aspects of
C language implementation that are not
well served by FORTH and so, for these,
there are additional instructions
developed within the microprogram to
prov ide eff icient C language operation.
The complete 'assembly language i is now
made up of HLLprimitives. There are
seven classes of primitive operation as
shown below I

Class
Stack
Logical
Compar ison
Control
Ar i thmetic
Memory
Literal

No. of orimitives
18
13

7
17
11
10

9

Typical primitives for the Comparison,Arithmetic, and Control operations are
listed below.

cmlPARISON~
U(
O(
0=
(

)
cmip

ARITHMETIC~
+

1+
1-
2+
2-
D+
DNECATE
NECATE
* STEP
/STEP

t-states
4
4
3

10
4
8
9+19n,

where n is the number of
comparisons made.

t-states
3
3
3
3
4
4

11
7
3
7 or 11

10,13, or 14

CONTROLll
?BRANCH
BRANCH
NOOP
EXECUTE
LEXECUTE
(+LOOP)
(DO)
(LOOP)
(OF)
I
J
EXIT
LEXIT
THREAD
HI!
IMê
RESET

t-states?
6
6
3
3
9

11
6
8
7
6

10
4
7
4
3
4
6

Examples of the implementation of a C
program in the XVME-616 primitives are
shown below:

C code:
static int a,bi
if (aGO)b=a*21

Primitive code:
a ~
10. (?BRANCH

a ~ 2* b I
THEN

where:

a - push address of a onto ASU
~ - fetch value at address on TOS

10 - push 10 onto the stack
(- compare TOS (10) with NOS (a) and

leave true/false flag on the stack
?BRANCH -

if flag on TOS is true then
execute instructions up to THEN,
otherwise continue from THEN

2* - multiply TOS by 2 (shift left 1
bit) and leave result on TOS

b - push address of b onto stack
I - store NOS at address indicated by

TOS

Execution time:
36 t-states if false = 1.8 uSecs
76 t-states if true ~ 3.8 uSecs

In this example the Primitive notation is
little more than a rearrangement of the
original C. The longest primitive in
this sequence is 10 t-states.

In the second example we look at the same
C code sequence reviewed earlier I

C code:
int a, b, ci
a~b+c I

Primitive code:
OVER OVER + 2UNPICK

Execution Time 19 t-states ~ 950 nSecs

Here a, b, and c are locals and rapidly
accessible wi th the arithmetic stack
manipulation primitives of which OVER and
UNPICK are typical. OVER takes only 3
t-states to execute and copies the
current NOS to the TOS. i + i adds the TOS
and NOS 1 eav ing the r esul t on NOS,
2UNPICK places the cur rent TOS 2 places
further down the stack leaving the stack
as c, b, a from the top.

104 The Journal of Forth Application and Research Volume 5 Number I

5. THE XVME-616 CPU

The practical implementation of this
two-stack CPU architecture is shown in
Figure 3. The XVME-616 CPU is implemen-
ted on a double high Eurocard with SSI
and MSI Advanced Schottky TTL devices and
a clock speed of 20MHz which results in a
maximum execution speed of 6.67 million
eLL instructions per second.

The two stacks are realized with 35 nSec
SRAM, and both are 16 bits wide and 1024
words deep. The execution sequencer
contains 512 56-bit words of microcode.
The bus structure is based on a 24-bit
address, l6-bit bi-directional data bus
with synchronous operation at 6.67
million bus read or write cycles per
second.

The instruction set is microprogrammable
and extensible and at this time consists
of 85 primitives associated with the
execution of C language programs. In
addition there are a number of primitives
associated with the hardware and the VME
bus interface. The architecture allows
the CPU to be tailored not only to the
execution of HLLs but also, by creating
new microcoded primitives, to applica-
tions requiring specific data manipula-
tion or processing procedures. In this
fashion the processor may become an
Applications Specific CPU.

6. THE XVME-616 PROCESSOR

The XVME-616 CPU is the heart of the
XVME-616 VMEbus processor which is shown
in total in Figure 4. The processor
consists of two cards, the XVME-616 CPU
card and the XVME-616 Memory, I/O, and
VME (MIOV) card. These two cards are
connected by a synchronous 6.67 Mhz bus.
The MIOV card supports a number of func-
tions, including:

A24 :016 VMEbus master interface

Peripheral bus interface which is
used to access the on-board I/O
dev ices

- 2 RS232 serial Ports
- real-time clock
- 2 EPROM sites

512 byte Boot ROM

128K of 65nSec SRAM main memory

Watchdog circuit for failsafe
monitoring of critical applications

Option One Arbiter for the VMEbus
with a VMEbus timeout counter

8 level interrupt handler
Local I/O
Timer/Clock
Abor t sw itch
VMEbus signals BCLR*, BER*,
and ACFAIL*
VMEbus in ter r upts, IRQl *-IRQ7*.

The XVME-616 processor is prov ided with a
complete multitasking operating system
and debugger.

A novel aspect of the implementation is
that the peripheral bus and the VMEbus

are syntheSized and arbitrated with
microcode. The two buses appear to the
XVME-616 CPU as simple memory mapped I/O
ports. This approach ar ises from the
large disparity in speed between the high
speed bus and the VMEbus and it would be
unacceptable to degrade the performance
of the CPU while waiting for address
arbitration logic and synchronization
log ic to permit accesses. A number of
high level primitives are provided to
access and control all the processor
fac ili ties including the VMEbus.

7. CONCLUSION

The power of the processor is illustrated
by reviewing some typical processor
operations.

7.1 The high level language DO loop

The XVME-616 implements a run-time loop
pr imi t ive, . (LOOP)., which maintains
index and loop end values on the return
stack, and performs a signed increment of
the loop index, a comparison with the end
value, and a conditional branch in 8
clock cycles or 400 nSecs, resulting in
2.5 million DO loops per second. The
much less powerful 68000 decrement and
branch if not zero instruction requires
10 clock cycles or 1 uSec in a 10Mhz,
O-wai t state des ign.

7.2 Context Switch

A mUlti-tasking context switch on the
XVME-616 simply requires the two stack
pointers, SP and RP, be saved and the
reloaded to point to the stack partition
for the newly activated task. There are
no other registers to be saved or restor-
ed and so a full context switch can be
executed in 5uSecs. The equivalent
operation in PODS running on a 68000
requires 140 microseconds and ~n a 20Mhz
68020 requires 30 microseconds.

7.3 High Level Str ing Compar e

The COMP primitive compares two byte
strings, of length 'n', held in main
memory for equality. The strings are
pointed to by parameters on the stack and
the length is def inedby a parameter also
on the stack. The primitive returns a
the value (n-x), on the stack, where x
equals the number of true comparisons.
This primitive is a complete implementa-
tion of the C langauge, string compare DO
loop and takes only 9 + 19n t-states and
processes character comparisons at a rate
in excess of 1 mill ion bytes per second.

8. SUM~iARY

The XVME-616 is a registerless, two-
stack machine, specifically designed for
the execution of High Level Languages and
C language in particular. It represents
a fundamental and significant change in
the design of processor architectures.
Even more fundamental than RISC (less of
the same) or Parallel (more of the same)
approaches. This processor can be
regarded as the first in a series of
machines deSigned to meet the needs of
demanding. real-time applications without
the heartache of machine level COding.

Proceedings of the 1987 Rochester Forth Conference 105

CPU

L3 MaIn Memory

registers

a
b

c

L-RSP~
L-sp --
L-pc--

Ooto Tronsfer Bus

local
Voriable
Staclc

J Subroutine
Return Staclc

Figure 1
Stack Structures in a Conventional Architecture

CPUr--------- ------i

DU IP
Main

Memory

Arithmetic Return

stoclc Stoclc

SP RP

Arithmetic Stoclc Unit Return Stoclc UnitL___________________~
loc81 V8riobles Subrouti ne

Tempor8rl, Storoge Return Addresses

Figure 2
A Two-stack Architecture

Progrom Code

Stotic Voriobles

106 The Journal of Forth Application and Research Volume 5 Number I

SP RP

Normol
Stock

Return
Stuck

Control Micro-orders fetched
fCOOE

Execution
Sequencer

Figure 3
XVME-6l6 CPU Block Diagram

PP

IP

A 15-A23

ALlLlress
Bus

AO-A 15

Ooto Bus
DO-O 15

MREQ
WR
BYTE
IÑ
INTACK

Proceedings of the 1987 Rochester Forth Conference

MF 1600CPU

PROCESSOR

High Speed Local Bus

(LBUS)

512 byte BOOT 12ôkbyle
ROM hi gh-speed

(BR OM) SRAM

r un/f

1 J lED

Peripheri:l Bus Re,et re,ef- Wetchdoi; f- ci rcuttry
-- ""11

Interfi:ce

Perlpherel Bu,

(PBUS)
Stet u,

lED dl,pley

2 channels Mulll -
abort/l

Reel -- Inlerrupt ,,,it
Prolocol Time Hendler

RS232C Serlel
b u, me,

Clock -- lED
I/O

(MM5B 167),
(Ze530)Seriell/0 .--

i- - ..0- 0
VMEbu,

., -
'"-- :: &i

E PROM JEDEC
oD c

I nlerfece .. c
LBUS 1: 0

SITE i EPROM ;: u

(Mele,y,) SIT 2 Bu, Time ~Out I.
Bu, 14

Arbiter

Figure 4
XVME-6l6 Processor Block Diagram

107

ail

t
ch

e,t
ch

ler

