
Proceedings of the 1987 Rochester Forth Conference 109

ADVANTAGES OF A FULLY SEGMENTED FORTH ARCHITECTURE
Jim Callahan

Harvard Sof tworks
PO Box 69, Springboro¡ OH 45066

(513) 748-0390

The structure of Forth definitions can be exploited to a far greater
extent than generally practieed. yielding improved speed, compactness,
and flexibility, and virtually eliminating limits on program size. Except
for incidental pointers, Forth definitions consist of machine code,
definition or parameter lists, and an optional identifier string. The
HS/FORTH Development System provided by Harvard Softworks since 1983
compiles words so that each of these portions is segregated into its own
segment. Although 8086 family processors form a very natural fit to this
organization, it is also appropri.ate to any processor capable of partial
width addressing. This architecture permits programs larger than 64k to
be written using fast, compact 16 bit addressing, and is transparent to
most applications. Very large programs can utilze additional code and
list segments almost as efficiently as the base ones. Each vocabulary
also has its own segment, permitting easy dynamic enhancement of both
structure and access (ie, reclaiming space from unneeded headers or
grafting of hash tables for 10 thousand line/min compilation). Assembled
or machine optimized phrases can be very easily included within colon
definitions, and colon definitions can be executed from within assembled
words. Also, any word can be redefined retroactively at any time, and it
is easy to define defining words that create any number of code fields.
Finally, the segmented architecture lends itself to the metacompilation
of separate systems using any threading or segmentation scheme, or easy
use of the system as a cröss assembler.

THE ARCHITECTURE

HS/FORTH initially consists of four segments: CODES FORTHS STACKS and
LISTS. FORTHS contains the name strings for the FORTH vocabulary. The
entry for each word contains a 2 byte pointer into the LISTS segment, the
name string, and the count byte. Creation of each new vocabulary causes
the creation of an associated segment, and since vocabulary segments are
pure there is no need for thread pointers or vocabulary numbers to
complicate the structure. The pointer gives the code field address in
the LISTS segment. That field is followed by the parameter field, as in
conventional Forth implementations. The code field gives the address of
the machine code primitive located in the CODES segment. Although each
of these segments is limited to 64k, both additional system segments and
data segments can be created as needed.

Segment management is accomplished through a linked list of segment
descriptors. Each descriptor holds the address of the base paragraph for
that segment, the maximum number of bytes available to the segment, the
offset of the first free byte, the offset of the beginning of the
relevant part of any word being defined, and a link to the previously
created segment. All segments are completely relocateable anywhere in
memory, and the size of each can be increased or decreased as needed.
Reinterpretation of the base paragraph field as a segment selector wil
allow use under native mode operating systems when they become available,
and the segmentation scheme allows easy use with current "expanded" ram
as welL.

110 The Journal of Forth Application and Research Volume 5 Number I

The system segments map naturally to the segment registers of lntel chips
with CODES assigned to CS, STACKS to SS, LISTS to DS and vocabulary to ES.
This means that considerably more than 64k memory is always available for
processing without ever having to waste time changing a segment register.
And the appropriate register is always selected by default, never
specified. Most non-segmented processors do provide 16 bit addressing
modes with a number of base address registers, enabling implementation of
this architecture even where the register mapping is not as obvious.

THE ADVANTAGES

Wi th the initial CODES and LISTS segment up to 128k of memory is
a vailable for "the program". Since this space is not cluttered with
headers, and pointers occupy only 16 bits, and machine code is more
compact than on conventional systems, this is .sufficient space to contain
programs that wouid occupy most of memory using 32 bit Forths. Having a
pure machine code segment allows code primitives to overlay one another.
A simple example is the word set containing STEP DUP~ and ~ (where STEP
is equivalent to 2+ DUP ~). All are entry points into a single machine
code primitive and were very conveniently defined using:

CODE STEP
+CODE ,

BX INC. BX INC.
BX (BX) MOV.

+CODE DUP' BX PUSH.
END-CODE

Obviously this construct is not possible in conventional systems.

Should 64k of pure multiple entry code primitives prove insufficient the
easiest solution is to create one or more additional segments to receive
all long code primitives. If we choose to offload long primitives to a
segment called CODEX we could use the following:

CODE BIG-ONE CODEX TRANSFER.
CODES. TRANSFER.

definition
END-CODE

.

The long jumps to and from the other segment have little impact on run
time since they are only used for long primitives, and data addressing is
not affected since only the code segment register is altered. Actually.
the assembler can assemble to any segment and can therefore also be used
to create conventional assembly language programs which can then be saved
with SAVE-BIN or SAVE-COM as needed.

Another benefit of separating code from the rest of the definition is
that machIne code can easily be included within a colon definition. This
trivial example prints the sum and difference of two numbers:

: S&D (% AX POP. AX PUSH. BX PUSH. BX AX ADD. %) ." Sum= "
(% AX POP. BX AX SUB. %)." Difference="

Similarly, optimizer output which would normally be used to create a code
primitive can also be integrated into colon definitions, possibly to
speed computation of the sum of squares of numbers in a table:

: TOTAL (%" 0 F=0 DO I DAT-TAB F""2 F+ LOOP "%) F.

Proceedings of the 1987 Rochester Forth Conference i ii

Even more important is the ability to execute colon definitions from deep
inside machine code primi ti ves. This is especially useful in two cases,
exception handlers for error conditions occurring within code primitives,
and interrupt handlers. The latter can also be handled entirely in high
level Forth by the INT: type colon definition available in HS/FORTH.
These facilities have been used to add time slice multitasking to
HS/FORTH in addition to the more typical round robin multitasking.

Since a program is more likely to run out of room in LISTS than in CODES,
we have provided words to create additional definition list segments.
MAKE-LIST and USE-LIST are used to create and select alternate list
segments. MAKE-LIST copies to the new segment that small portion of the
old LISTS segment which has already been defined. Just as HS/FORTH can
assemble into any segment, it can also compile into any segment. Since
there is some memory overhead for having copies of the root definitions
in each list segment, this approach is appropriate for applications that
can be reasonably divided into separate subtasks, each of which requires
only the basic words in common. This is also the basis for a multi-user
system currently under development in which each user has their own
separate definition list segment.

This approach is, however, not always appropriate. It is inefficient
when large parts of the application are all so interrelated that there is
no easy subdivision of words into separate segments. EXPORT-SEGS also
creates an alternate list segment, but only copies the lowest few hundred
bytes containing the cfa's of the most essential words such as DOCOL,
EXIT, and the various literal, branch and loop primitives, and the inter-
segment thread return primitive. It also creates a root vocabulary for
the words that wil be defined in the new segment. Any word defined in
any segment can be used in any colon definition in any other segment,
provided that it has been declared as imported. Code primitives can be
imported with IMPORT-CODE which establishes a two byte local cfa. There
is no run time overhead for importing a code primitive and the data
segment in effect during execution is that of the host word.

More generally, any word can be imported with the universal import word:

IMPORT word-name word-source-segment-name

This creates a sIx byte transfer vector in the target definition list
segment, the first two bytes serving as the imported word's local cfa.
Run time overhead is minimal, about the same as for a single colon
nesting leveL. Since execution would typically pass through several
colon nesting levels in one segment, then cross into another segment and
pass through several more nesting levels before returning, run time
overhead wil generally be insignificant.

An additional benefit to multiple well defined code and list segments is
that temporarily unneeded ones can be easily swapped out to disk or
expanded memory - providing essentially unbounded program size with very
minimal overhead. This also applies to data segments and vocabulary
segments. Remember that each vocabulary has a segment of its own.

Since vocabulary segment entries form a simple list, and there are no
pointers into the vocabulary segments, it Is possible to delete word
headers at any time and slide the rest of the vocabulary entries down to

112 The Journal of Forth Application and Research Volume 5 Number i

reclaim the space vacated. Besides saving space, this provides a
facility for local definition where all word names that should remain
private within a module are beheaded at the end of that module. It is
also simple to create synonyms for previously defined words. Since they
do not occupy program space, and since the space they do occupy can be
reclaimed at any time, there is absolutely no reason not to use synonyms
wherever they would make your program more readable.

A final benefit of the independent vocabulary segments is the ease with
which they can be modified for even greater performance. We recently
added another short utility to the system which when loaded converts the
vocabularies in the running system for hashed access -- and increases
compilation speed to about ten thousand lines per minute on an AT.

Integrating all the segment management features mentioned above gives a
system which is almost inherently a metacompiler. We provide several
riles. which ilustrate use of the system as a metacompiler ranging from a
simple few hundred byte meta-compiled utility to a complete Forth
execution core and demo message that fits in under 2k. That example
features interleaved codes and lists, but separate headers, as is
appropriate for small utilities. It would also be possible to
metacompile direct, subroutine, or token threaded systems in the target
segmen ts.

Direct threading is appropriate for small systems, but colon nesting time
dominates large deeply nested systems and in this case direct threaded
systems are either slow and waste a lot of extra space or waste some
space and are very slow, except of course for very shallowly nested tasks
such as advertising benchmarks. That is why our main system is indirect
threaded. If the extra 5 to 10% time for the indirect threaded NEXT is
unacceptable, it is better to speed execution by a factor of 5 or more
with the optimizer, which would generate the same code whether the system
were direct or indirect threaded.

Now that we've squeezed about all that we can out of the system segments,
it's time to attack the data segments. When it comes to large arrays,
segments are indeed a bit of a nuisance. But not an insurmountable one.
Small arrays can usually be kept in the parameter field in the definition
iist segments. Being firm believers in multiple code field definitions
we provide 1 through 4 dimensional arrays for all data types (through
quad length integer plus all 8087 types) with fetch as the default action
and store and offset as options. This would take a lot of space for the
primitives In most systems, but using multiple entry points Into
collective code primitives compacts things immensely. Another complete
set is available for data arrays in other segments, inclUding arrays that
span segments. The only limit is 64k items of whatever size per array.
A double precision floating point array could span a linear address space
of half a megabyte with no need to ever worry about which particular
segment was being used. All you need is the indices, the array name, and
possibly a prefix to select the store or offset option.

CONLUSlON

We continue to discover more and more advantages to intellgent
segmentation of Forth definitions. We have yet to discover any
significant disadvantages. The real proof of its value is that
competitors have finally begun attempting to adopt the architecture
that we pioneered.

