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Abstract

A virtal machine emulator (writtn in Fort) is being used to aid in the development of the Utah

Common Lisp compiler. The compiler emits code for an abstract machine with an unlimited
number of virtal registers. The register alocator then assign these virtal registers to real
registers and stack fraes of the target machie. Once the registers have ben assigned, the
abstract operations are then mapped to target machine instructions. This paper shows the use of
the emulator on virtal register code (bfore register alocation).

Introduction

The developing Utah Common Lisp (UCL) system is a successor to the Portable Standard Lisp

(PSL) (Oriss 82) and Portable Common Lisp Subset (PCLS) (Shebs 86) systems. Like its
predecessors, UCL has portabilty as a major goal, initial targets being the CRA Y, V AXEN and

680?Os. Work is advancing on the fronts: a bootstrap kernel (written in C), the rutime system

(which is loaded into the bootstrp kernel), and the compiler (which compiles the runtime system
code, as well as user code).

Intead of waiting for the compiler's register allocator and machine-specific mapping phases to
be completed, we wrote a virtal register machine emulator in Fort to exercise code generated

by its initial code generation phase. We have used the emulator on numeric functions to validate

the code being generated. The rest of ths paper wil use a simple example to ilustrate how the
emulator works.

Virtual Register Machine Code Format

The code generation phase of the UCL compiler is given a Lisp fuction. It produces a control-
flow graph of basic blocks. Each basic block contains a straight line sequence of abstract
machine operations. Each fuction is assumed to star with a fresh set of unlimited virtual
registers which become the operands to the abstract machine operations. We wil use a linear
iterative version of FAClORlAL as an example:

(defun factorial (n)
(labels ((iter (product counter)

(if (~counter n)
product
(iter (~ counter product)

(+ counter 1)))))
(iter 1 1)))

We intercept the results of the compiler before register alocation, formating the basic blocks as a

series of Fort words:
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.. ***initcode***
quote factorial entry bb10Ò2entry setf-symbol-function \call drop
quote factorial \move 30 vr !
\ \return

* * * initcode* * *

.. bb1002
2 vr !
1 1 entry bb1001 \call 27 vr
27 vr 8 \ \return

.. bb1001
6 vr ! 5 vr !
6 vr 8 2 vr 8 entry ~ \call 9 vr
nnil 9 vr 8 entry eq \call true? if entry l:else-1002 \jumpthen
entry l:ft-1004 \fall

.. I: ft-1 004
5 vr 8 'move 4 vr !
entry 1 :end-if-1003 \jump

..I:else-1002
6 vr 8 5 vr 8 entry * \call 13 vr !
6 vr 8 1 entry + \call 16 vr
13 vr 8 16 vr 8 entry bb1001 \call 4 vr
entry I: end-if-1003 'fall

.. l:end-if-1003
4vr 8 \ 'return

: : is a defining word which acts like : if the word being defined is not already in the dictionary.
Otherwise it enters a headless word for the new definition into the dictionary, and changes the
existing definition to be a colon word, with its first parameter field pointing to the headless word,
and the second pareter field pointing to exit. vr is an array which places its base address

plus the offset (which precedes it) ties element size on the stack.

The words which represent the basic blocks make forward references, so before the basic block
fie is loaded, a fie of stubs is loaded first:

factorial undefined-function ;
bb1002 undefined-function ;
setf-symbol-function undefined-function
factorial undefined-function
bb1001 undefined-function ;
~ undefined-function ;

(remaining forward references omitted)
TIs fie is created by passing over the basic block fie and makg a stub for any word preceded
by quote or entry (not to be confsed with Fort's entry). ::: is a defining word which

acts like : if the word being defined is not alady in the dictionary. Otherwise, if the word
already exists, it ignores the : :: definition.

Operation

***initcode*** is the first colon definition encountered when loading the basic block code
fie. It is executed immediately after it is defined. quote and entry are immediate words
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which take the words following them in the input stream and compile their name field address
and code field addresses (respectively) as literals. When ***initcode*** is executed

setf-symbol-functiön makes factorial an alias for bbl002.

The entry basic block for each fuction expects its arguents in the Fort stack. These values are

immediately stored into virtal. registers. The final basic block of each fuction leaves its result
in the Fort stack. Al other communcation between the basic blocks of a single function is done
thugh the virtal registers.

bbl002 is the entr block for the factorial fuction. It takes its single arguent from the

stack and stores it in virtal register 2. It then places two ones on the stack and %calls
bbl 00 1, the entry block for the internal iter function. The result of ths internal operation is
stored in virtal register 27. Finaly, thevalue stored in virtal register 27 is placed on the stack

as the return value of the factor ial fuction.

Abstract Machine Operations

Abstrct operations are words which begin with %. Ths example uses the basic control
operations.

. %call - a "saved-pc" fuction cal (which could be optimized away in the Fort

emulator, since typical Fort word nesting wil implement it).

. % jump and % fall - pedonn "no-save-pc" jumps to the given blocks (pppingthe return

stack in the process, so the word that executes them is never returned to).

. %:tet urn - is commented out, since the nonnal Fort return mechanism is used.

The only data operation, %move is a noop in this implementation.

Limitations

We can only emulate single iterative functions. Recursive fuctions, with their chain of deferred

operations, do not prouce corrct results because the virtal registers are not unique between the

recursive cals. Ths can be seen clearly in th code to the stadard recursive version of factorial:

(de fun fact (n)
(if (- n 1)

1

(* n (fact (- n 1)))))

.. ***initcode***
quote fact entry bb1003 entry setf-symbol-function 'call drop
quote fact 'move 20 vr i

* ** initcode** *
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.. bb1003
2 vr ! \ %entry 1003 vr 17
2 vr ~ 1 entry - %ca11 6 vr
nnil 6 vr ~ entry eq %call true? if entry *:e15e-1006 %jump then
entry f :ft-100e %fall

f:ft-100e
1 %move 17 vr !
entry l :end-if-1007 %jump

.. ':e15e-1006
2 vr 81 entry - %call 11 vr !
11 vr 8 entry fact %call 12 vr
2 vr 8 12 vr ~ entry * %call 17 vr
entry l :end-if-1007 %fall

.. f: end-if-1007
17 vr 8 \ %return

The intantiation of fact making the recursive cal to itself in basic block #:else-1006
expects al of its virtual registers to remain untouched, but the recursive cal operates out of the
same registers. Tls alo makes it impossible to emulate more than single fuctions.

Extensions

The emulator has ben useful to valdate the compiler's code generators. When the register
alocator is completed we wil use the emulator on alocated code, rather than virtual register
code. Tls wil be an interesting mix, where we simulate the real registers of, say, a 68020, but
stil emulate the abstract machine operations. At ths point, the restrctions on single, iterative
fuction emulation wil be removed, since the alocated code wil do the proper context saving
and restorig. The ideas discussed in ths paper can be extended to provide a method to bots trap
a full Lisp system to a Fort base (Carr 87).
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