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Abstract: There has been much interest in building a Lisp system on top of Forth, especially a
Forth engine. A common approach has been to write the Lisp system from scratch, in Forth. We
propose an alternate approach based upon the existing Portable Standard Lisp (PSL) system. The
PSL compiler emits code for an abstract machine with 15 registers. Typically, the abstract
machine code and registers are mapped to target operations and registers/memory locations. In
this paper we explore two approaches to bootstrapping Lisp in Forth: 1) create a Forth wordset to
emulate the PSL abstract machine, 2) map PSL’s abstract machine operations to Forth primitives.

Introduction: Our group has been involved in building Lisp systems for a decade. Our
approacheS have ranged from defining a Standard Lisp dialect [Marti 79], which is then
implemented upon other Lisp dialects via compatibility packages, through modifying the
compiler to emit Pascal code to bootstrap Lisp on Terraks, to the current PSL/PCLS system
{Griss 82] [Shebs 86), which is operational on Vax BSD Unix, Vax VMS, Apollo DOMAIN
Aegis, HP Series 9000 HP-UX, HP Integrated Personal Computer, Sun BSD, Iris BSD, Gould
BSD, Cray CTSS, Cray COS, IBM 370 VM/CMS, and MacIntosh.

We are currently developing Utah Common Lisp (UCL). This differs from our previous PCLS
system in that we are writing a new compiler, rather than use the existing PSL compiler. A
Forth-based machine emulator [Carr 87a] has been written to help validate the early phases of the
new compiler. It became apparent that the ideas used in the emulator could be extended to
provide a mechanism to bootstrap our Lisp systems to a Forth base. Although we are moving
toward the UCL system, this paper will develop a plan to bootstrap the existing PSL/PCLS
system, since it is well understood and time-tested.

The idea is to perform a half-bootstrap of PSL from an existing host implementation to a Forth
base. First we compile the PSL runtime system to the Forth base. Once that is operational we
_load the compiler into the PSL/Forth system and then have it compile the compiler. The half-
bootstrap is then complete and we have a running PSL on a Forth base, independent of the porting
host.

We will explore three central issues: 1) implementing Lisp data types and their associated
operations, 2) handling control operations (jumps, calls, etc.), and 3) obtaining low level support
from the operating system (io, signals, saving images, etc.). (All Forth examples will be in
Bradley Forthware’s CForth-83.)

Data Types and Operations: Implementing Lisp data types turns out to be the easier task,
Instead of writing a heap in Forth [Dress 86], we just compile the existing heap and data
operations of PSL to Forth. For instance, the definition of cons: :
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(de cons (a b)
(let ((ptr (gtheap (pairpack))))
(setf (wgetv ptr 0) a)
(setf (wgetv ptr 1) b)
{(mkpair ptr)))

compiles to the following abstract machine code:

(*entry cons expr 2)

(*push (reg 2))

(*push (reg 1))

(*move (gquote 2) (reg 1))

(*link gtheap expr 1}

(*move (frame 1) (memory (reg 1) (wconst 0)))
(*move (frame 2) (memory (reg 1) (wconst 4)))
{(*mkitem (reqg 1) (quote 9))

(*exit 2)

*entry is a pseudoop that indicates the beginning of a procedure. cons saves its arguments in
the stack then calls (*1ink) gtheap, the canonical PSL heap allocator, with an argument of 2

. (PSL passes its arguments in registers). gtheap retums a pointer to the allocated memory in
(reg 1). cons then *moves its arguments into the newly allocated pair via the memory
(indirect plus offset) abstract machine addressing mode. PSL is a tagged architecture, so it tags
the cons poihter via *mkitem with the constag (9). Thisisleftin (reg 1) as the result of
the call to cons. (*exit 2) deallocates the stack and does a retumn.

We can emulate this code in Forth quite easily by transforming it from prefix to postfix, handling
source operands before, and destination operands after, the abstract machine operation (which
expect their operands, and leave their results in the Forth stack). reg is an array which places its
base address plus the offset (which precedes it) times element size on the stack:

: cons
2 reg 8 *push
1 reg & *push
2 *move 1 reg !
*link gtheap
frame *move 1 reg @ 0 memory ! \ frame accesses the stack
frame *move 1 req 8 4 memory ! \ frame is l-based
reg 8 9 *mkitem 1 reg !
*exit

N =N

This emulation approach is useful for precise control of abstraction machines operations and
addressing modes, but is clearly redundam Instead, we can map the abstract opcrations directly
to primitive Forth operations:

: cons
2 reg @
1 reqg @
2 1 reqg !
gtheap
0 pick 1 reg 8 !
1l pick 1 reg @ 4 + !
9 27 shift 1 reg 8 or 1 reg ! \ assumes tag occupies upper 5 bits
drop drop \ of 32 bit word

The car of a cons cell can be obtained by stripping the tag and dereferencing the pointer (no

type checking in this example):
: car
th 7ffffff 1 reqg 8 and \ strip tag - hex base

@ 1 reg ! \ dereference pointer

In these examples, each Lisp procedure passed arguments and returned results in the abstract
registers, which are emulated in Forth. If we were porting to a Forth engine, we would have the
compiler emit code for a stack machine, rather than a register machine, to take advantage of the
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Forth engine’s stack cache.

Handling Control Operations: Abstract machine control operations are straightforward to map
to Forth if they have been generated in response to structured control operations in Lisp. For

example, the string space allocator;

(de allocate-string (len)
;! Make str with Len chars, uninitialized
(1f (intp len)
{if (wlessp len 0)
(nonpositiveintegererror len 'allocate-string)
(mkstr (gtstr (-~ len 1))))
(nonintegererror len ‘allocate-string)))

generates abstract machine code with labels and jumps:

(*entry allocate-string expr 1)

(*push (reg 1))

(*jumpnotintype (label #:90217) (reg 1) posint-tag)

(*move (frame 1) (reg 1)) )

(*jumpwgeq (label #:90219) (reg 1) (quote 0))

(*move (quote allocate-string) (reg 2))

(*linke 1 nonpositiveintegererror expr 2) ;tail recursive call (exit)
(*1bl (label #:g0219))

(*wplus2 (reg 1) (wconst -1))

(*link gtstr expr 1)

(*mkitem (reg 1) (quote 4)) ¢4 is string tag

(*jump (label #:90137))

(*1bl (label #:90217))

(*move (quote allocate-string) (reg 2))

(*move (frame 1) (reg 1))

(*linke 1 nonintegererror expr 2) stall recursive call (exit)
(*1bl (label #:90137))

(*exit 1)

One way to handle the branch is to make each basic block of straight line code into a separate
Forth word as done in [Carr 87a). Although this is acceptable in an emulator the overhead is
probably too costly for a full implementation of PSL. Instead, we can use the standard Forth
branching words:

: allocate-string
1l reg €
l reg @ th 7ffffff and posint-tag = not ?branch [ >mark }
0 pick 1 reg !
1 reg @ 0< ?branch [ >mark )
quote allocate~string 2 reg !
drop nonpositiveintegererror unnest \ tail call
[ >resolve ]
-1 1 reg +!
gtstr
4 27 shift 1 reg @ or 1 reg !
branch [ >mark }
[ swap >resolve )
quote allocate-string 2 reg !
0 pick 1 reg !
drop nonintegererror unnest \ tail call
[ >resolve ]
drop

Although this example was easy to handle (and backward branches can be handled in the same
way), the compiler can emit unstructured control sequences, and the user can program them using
tagbody and go. In general, we will need to build a table to associate labels with their
addresses for use in resolving branches.

Operating System Services: PSL has standard system routines which are generally interfaced to
the existing services provided by the target’s operating system. Input/output (including file i/0) is
generally straightforward to implement since every system we have encountered provides these
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services at some level. The most problematical services are unexec, which saves an executing
image to be restarted later; oload, which load and links foreign (non-Lisp) code into the system;
and signal handling (not all machines provide signal catching). unexec and oload require
knowledge of the target’s binary file formats. Although conceptually straightforward, the details
and limitations in a particular target can be overwhelming. Generally, we write these services in
the target’s native language, then link them into the PSL kemnel.

Conclusion: PSL is ported to new machines via a half-bootstrap process. What we are proposing
here is the standard PSL port: Forth being the target instruction set, rather than, say, the Vax or
68K instruction set. There is little reason to port to a Forth implementation running on
conventional hardware (although it might be a potential base for portability). This becomes
interesting if the target is a Forth engine. Existing Forth engines provide hardware support for 16
bit words. This size is too small to support the full range of Lisp programs. Bank switching can
help but portions of the existing PSL system would have to be rewritten to take this into account.
If Forth engines are to provide a useful platform for other languages they should directly handle
modem word widths (typically 32 bits) and present a flat addressing space. Also, our experience
with the FAIM-1 Symbolic Multiprocessor [Carr 87b] indicates that it is beneficial to include
some limited general purpose registers in a stack machine to hold frequently referenced items.
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