
Proceedings of the 1987 Rochester Forth Conference 117

Putting Lisp on Forth Base

Harold Carr and Robert R. Kessler

Uta Portable Artficial Intellgence Support Systems Prject
Deparent of Computer Science

University of Uta
Salt Lake City, Uta 84112

Abstract: There has been much interet in building a Lisp system on top of Fort. especialy a
Fort engine. A common approach has ben to wnte the Lisp system from scratch. in Fort. We
propose an alternate approach basd upon the existing Portable Standard Lisp (PSL) system. The
PSL compiler emits coe for an abstrct machine with is registers. Typicaly. the abstract
machine code and registers ar mapped to taget operations and registers/memory locations. In

ths paper we explore two approaches to botstrapping Lisp in Fort: 1) create a Fort wordset to

emulate the PSL abstract machie. 2) map PSL's abstrct macluneoperations to Fort pnmitives.

Introduction: Our group has been involved in building Lisp systems for a decade. Our
approaches have raged from defining a Standard Lisp dialect (Marti 79). which is then
implemented upon other Lisp dialects via compatibility packages. though modifying the
compiler to emit Pascal coe to botstrap Lisp on Terr. to the currnt PSL/PCLS system

(Gnss 82) (Shebs 86). which is operational on Vax BSD Unix. Vax VMS. Apollo DOMAIN
Aegis; HP Series 900 HP-UX. HP Integrated Personal Computer, Sun BSD. Ins BSD. Gould
BSD. Cray crSS. Cray COS. mM 370 VM/CMS. and MacIntosh.

We are currently developing Uta Common Lisp (DCL). Ths differs from our previous PCLS
system in that we ar wnting a new compiler. rather than use the existing PSL compiler. A
Fort-based machie emulator (Car 87a) has been written to help validate the early phases of the
new compiler. It became apparnt that the ideas used in the emulator could be extended to
provide a mechansm to botstrap our Lisp systems to a Fort base. Although we are moving
towar the UCL system. ths paper wil develop a plan to bootstrap the existing PSL/PCLS
system. since it is well understood and time-tested.

The idea is to perfonn a half-bootsp of PSL from an existing host implementation to a Fort

base. First we compile the PSL rutime system to th Fort base. Once tht is operational we
load the compiler into the PSL/ort system and then have it compile the compiler. The haf-
botstrp is then complete and we have a rung PSL on a Fort base. independent of the porting
host

We will explore the centr issues: 1) implementing Lisp data typs and their associated
operations. 2) handling contrl operations (jumps. cals. etc.). and 3) obtainig low level support
fro the operating system (io, signals. saving images. etc.). (All Fort examples wil be in
Bradley Fortware's CFort-83.)

Data Types and Operations: Implementing Lisp data typs turn out to be the easier task.
Intead of writig a heap in Fort (Dress 86). we just compile the existing heap and data

operations of PSL to Fort. For instace. the defuution of cons:

118 The Journal of Forth Application and Research Volume 5 Number i

(de cons (a b)
(let ((ptr (gtheap (pairpack))))

(setf (wgetv ptr 0) a)
(sett (wgetv ptr 1) b)
(mkpair ptr)))

compiles to the following abstrct machie coe:
(.entry cons expr 2)
(.push (reg 2))
(.push (reg 1))
(.move (quote 2) (reg 1))
(.link gtheap expr 1)
(.move (trame 1) (memory (reg 1) (wconst 0)))
(.move (frame 2) (memory (reg 1) (wconst 4)))
(.mkitem (reg 1) (quote 9))
(.exit 2)

*entry is a pseudoop tht indicates the beginng of a procedure. cons saves its arguments in
the stack then cal (* link) gtheap, the canonical PSL heap allocator, with an argument of 2

. (pSL passes its arguments in registers). gtheap return a pointer to the alocated memory in
(reg i). cons then *moves its arguents into the newly alocated pair via the memory

(indirect plus offset) abstract machine addressing mode. PSL is a tagged architecture, so it tags
the cons pointer via *mkitem with the cons tag (9). TIs is left in (reg i) as the result of
the cal to cons. (*exit 2) deallocates the stack and does a return.

We can. emulate tls code in FoIt quite easily by transfonning it from prefix to postfx, handling
source operands before, and destination operands after, the abstract machine operation (which

expect their operands, and leave their resuts .in the FoIt stack). reg is an arry which places its

base address plus the offset (which precedes it) times element size on the stack:
cons
2 reg 8 .push
1 reg 8 .push
2 .move 1 reg
.link gtheap
1 frame .move 1 reg 8 0 memory \ frame accesses the stack
2 frame .move 1 reg 8 4 memory \ frame is 1-based
1 reg l 9 .mkitem 1 reg !
2 .exit

Ths emulation approach is useful for precise control of abstraction machines operations and
addressing modes, but is clearly reundant. Instead, we can map the abstract operations directly

to primitive FoIt operations:
cons
2 reg 8
1 reg 8
2 1 reg
gtheap
o pick 1 reg 8
1 pick 1 reg 8 4
9 27 shift 1 reg
drop drop

+

l or 1 reg ! \ assumes tag occupies upper 5 bits
\ of 32 bit word

The car of a cons cell can be obtained by strpping the tag and dereferencing the pointer (no

typ checking in Uus example):

car
th 7ffffff 1 reg 8 and
8 1 reg !

\ strip tag - hex base
\ dereference pointer

In these examples, each Lisp produre passed arguments and returned results in the abstract
registers, wruch are emulated in Fonh. If we were porting to a Fort engine, we would have the
compiler emit code for a stack machine, rathr than a register machine, to take advantage of the

Proceedings of the 1987 Rochester Forth Conference 119

FOTU engine's stack cache.

Handling Control Operations: Abstrct macrune control operations ar straightforward to map
to FoTU if they have been generated in response to strcture contrl operations in Lisp. For

example, the strng space alocator:
(de allocate-strinq (len)

I I Make str with Len chars, uninitialized
(if (intp len)

(if (wlessp len 0)
(nonpositiveinteqererror len 'allocate-strinq)
(mkstr (qtstr (- len 1))))

(nonintegererror len 'allocate-strinq)))

generates abstract macrune code with labels and jumps:
(*entry allocate-string expr 1)
(*push (req 1))
(*jumpnotintype (label ':q0217) (uq 1) posint-taq)
(*move (frame 1) (req 1))
(*jumpwgeq (label ':q0219) (req 1) (quote 0))
(*move (quote allocate-strinq) (reg 2))
(*linke 1 nonpositiveinteqererror expr 2) itail recursive call (exit)
(*lbl (label ':q0219))
(*wplus2 (req 1) (wconst -1))
(*link gtstr expr 1)
(*mkitem (reg 1) (quote 4)) 14 is strinqtaq
(*jump (label ':q0137))
(*lbl (label' :q0217))
(*move (quote allocate-strinq) (reg 2))
(*move (frame 1) (req 1))
(*linke 1 nonintegererror expr 2) itail recursive call (exit)
(*lbl (label ':g0137))
(*exit 1)

One way to handle the branch is to make each basic block of straght line code into a separate
FoTU word as done in (Carr 87a). Although ths is acceptable in an emulator the ovemead is
probably to costly for a fu implementation of PSL. Intead, we can use the standard Fort

branching words:

allocate-string
1 reg 8
1 reg 8 th 7f!!!!! and posint-tag - not ?branch i ~mark)
Q pick 1 req !
1 reg 8 Qc ?branch (~mark)
quote allocate-string 2 reg !
drop nonpositiveintegererror unnest \ tail call
(~resolve)
- 1 1 req +!
qt st r

4 27 shift 1 req 8 or 1 req
branch (~mark)
(swap ~resolve)
quote allocate-strinq 2 req
Q pick 1 req !
drop nonintegererror unnest \ tail call
(~resolve)
drop

Althugh ths example was easy to handle (and backward braches can be handled in the same
way), the compiler can emit untrctured control sequences, and the user can program them using

t-agbody and go. In genera, we wil nee to build a table to associate labels with their
addresSes for use in resolving braches.

Operating System Services: PSL has stadard system routines which are generaly inteñaced to

the existing services provided by the target's operating system. Input/output (including fie i/o) is
generay stighûorward to implement since every system we have encountered provides these

120 The Journal of Forth Application and Research Volume 5 Number 1

services at some leveL. The most problematical services ar unexec, wluch saves an executing
image to be restard later; oload, wluch load and lin foreign (non-Lisp) code into the system;

and signal handling (not al machies provide signal catclung). unexec and oload require
knowledge of the target's binar fie formats. Although conceptualy straightforward, the details
and limitations in a parcular target can be overwhelming. Generaly, we write these services in
the target's native language, then link them into the PSL kerneL.

Conclusion: PSL is ported to new maclunes via a hal-boots trap process. What we are proposing

here is the standard PSL port: Fort being the target instrction set, rather than, say, the Vax or
68K instruction set. There is litte reason to port to a Fort implementation ruing on
conventional hardwar (although it might be a potential base for portabilty). This becomes
interesting if the target is a Fort engine. Existing Fort engines provide hardware support for 16
bit words. Ths size is too smal to support the full range of Lisp programs. Ban switchig can
help but portions of the existing PSL system would have to be rewritten to take ths into account.
If Fort engines ar to provide a useful platform for other languages they should directly handle

modem word width (typically 32 bits) and present a flat addressing space. Also, our experience
with the FAIM-I Symbolic Multiprocessor (Car 87b) indicates that it is beneficial to include
some limited genera purpse registers in a stack maclune to hold frequently referenced items.

Acknowledgments: Work support in pa by the Defense Advanced Reseach Projects Agency under
contrt number DAAKI 1-84-K-00l7, and by the Hewlett-Packad Corpration.

References

(Car 87a)

(Car 87b)

(Dress 86)

(Griss 82)

(Mar 79)

(Shebs 86)

Carr, H; Kessler, R. R.
An Emulator for Utah Common Lisp's Abstract Virtal Register Macrune.
In Proceedings of the 1987 Rochester Forth Conference. 1987.

Carr, H.
Popcorn: A Kernoil Compiler for the FAIM-1 Symbolic Multiprocssing

System.
Utah PASS Project OpNote 87-04, University of Uta, Departent of

Computer Science, April, 1987.

Dress, W. B.
A FORTH Implementation of the Heap Data Structure for Memory

Management.
Journal of Forth Application and Research 3(3):39-49, July, 1986.

Griss, M. L.; Bensn, E.; Maguire, G. Q. Jr.
PSL: A Portable LISP System.
In Proceedings of the 1982 ACM Symposium on liSP and Functional

Programing, pages 88-97. ACM, Camegie-Mellon University,
Pittburgh, Pa., 1982.

Mart, J. B., et al.
Standard LISP Report.
SIGPLA Notices 14(10):48-68, October, 1979.

Shebs, S.; Losemore, S.
Portable Commn Lisp Subset Users Guide.
Uta PASS Project OpNote 86-04, University of Utah, Deparent of

Computer Science, May, 1986.

