
Proceedings of the 1987 Rochester Forth Conference 121

FORTH DATA STRUCTURES: A working proposal
by Robert James Chapman
IDACOM Electronics LTD.

will be needed to make FORTH a more accpt-
able group programming language. An exten-
slonto FORTH Is proposed that WILL provide the
programer wih a small but powerful set of
tools for the creation and manipulation of data
structres. This data structure extension con-

sists of four basic data types, wIth modlflers.
These data type primitves may be used by them-
selves. or combined to. create new data types.
The programmer can aeate data types appropri-
ate for their environment and combine them to
manipulate complex data structres. This papr
Is meant as a vehicle for Introducing this data
structre extension to. FORTH and for that rea-
son It WILL not go Into detail about the Implemen-
tation. Hopefully It wil generate Interest and lay
groundwork for further dIscussion In this area.

Abstract: Standard FORTH contains very
little In the way of data structres. The
only permanent storage strcture Is a

varable. However, due to FORTH's extensibilI-
ty, It Is not limited to varables. A FORTH pro-
grammer may create any sor of data stctre
that may be required, but the FORTH tools for
creating these structres are elementar and
require a lot of effort to work wih complex
strctures. Most of the time, no formal struc-
ture Is used and the programmer must remembr
throughout their program whther they are
accessing a word, a byte or even which bits In a
bit field. Also if the structure Is changed at
some point, then all accesses to that structure
must be changed as well. As FORTH makes more
Inroads Into large programming environments

(parlcularly 32-blt environments), extensions

An Example
A data strcture is a template. Whn th

template is placed over an ara of memory, it
provides meaig to cert portons of th memory
by defig th size an access. Th fit par of
utig a data strctur is to defi th template.
Th spcificaton of a template is analogous to
defig a FORTH word.

10 figur 1, two strcture i
:STRUCTURE BUFFER

LONG -::NEXT
10 ARRAY OF BYTE -::OATA

STRUCTURE; -

word have ben defid. In th fit strcture,
BUF is being defid as a memory template and
it cons of two elements. Th first element,

-::NB, is used to conta a pointer to th next
item in a li lit an any acss to it wil be as a
long word. Th seco element of th strcture,
-::DA TA, is an ary of byts. Any access to th

an six FORTH wi be on a byte bas. Also, it is inexed on a

l this wil be an Item of a link list)
pointer to the next bufer) !i Ths is how a data strtur
array of 10 bytes for data) for a li list buer pool might

look. The fit stnicture defies
the tem'llate for a bufer which con-
sists 0 a pointer and a data por-
tion. The seond stnicture ihen
defines the bufer pol which con-
sists of a poter for the beginig
of the list and an aray of buffers
using the first itrctur. Now that
the templates have been defined,
they may placed over memory and
the '-;.' won!s may be used 10
index to the speific locations.

-::NEXT - Indxes to
-::OATA U 0 ii - Indexes to
-::OA TAU 1 ii - Indexes to

-::OA T A IT 9 II - Indexes to

:STRUCTURE BUFFER POOL
LONG -::FREE 1Iš'
5 ARRAY OF BUFFER -::BUFFER

STRUCTURi:
-::FREE_lIST - Indexes to

-::BUFFER IT 0 JJ - Indexes to

-::BUFFER IT 1 D - Indxes to

-::BUFFER H 4)) - Indexes to

~ po of bufers)
pointer to first bufer In free list)
5 bufers as defined previously)

;:!~;"Gl.t;1

d+;~

!Mt~ýllirN

'Xlg~W;tX

dr~;iW.~dt

?¥2~~;l;t

I The word :STRUCI and STUCI; ar simar 10 : and;. They delieate the defiition and creole the template
word. LONG, CHA and ARY_OF ar IÍply elements of a stnict. They make the followig word into a FORTI
definition and assign certai charcteristcs to it.

2 'T use of '-::' i. familar to C progammers and it is used to indicate that that won! is indexig into a strcture.

122 The Journal of Forth Application and Research Volume 5 Number 1

BUFFER POOL BUFFERS
: RESET 3'OOL (--)

40
DO
BUFFERS -~BUFFER ii i D
BUFFERS -~BUFFER ii 11 + D -:.NEXT PUT
LOOP
o BUFFERS -:.BUFFER ii 0 ii -:.NEXT PUT
BUFFERS -:.BUFFER ii 4 JJ
BUFFERS -~FREE LIST PUT ;

: GET _BUFFER (- address I 0)
BUFFER POOL -:.FREE LIST GET OUP
IF OUP :;NEXT GET -
BUFFER POOL -:.FREE LIST PUT
ENOIF; - -

: PUT_BUFFER (address --) (return a buffer to the pool)
BUFFER POOL .:.FREE LIST GET OVER -:.NEXT PUT (point to previous top Item)
BUFFER:=PooL -:.FREE:=L1ST PUT ; (new top Item)

fiii. 3 Bufer pol intialon and acceii word

byte basis. The second strcture conists of 2
elements. TI first element, -;.FREE_UST, is to be

used as a pointer to a lit. 'I second element uses

th fit structure to defi an ary of strcture of
typ BUFR which may be inexed with
.:.BUFF to acces th invidual buffers. 'I
following code ilustrtes th use of thse
structus in defing an intializtion word for th
buffer pool an word to obta an return buffers
in an orgarzed manr.

Figure 3 ilustrates the use of th strcture
words. TI fit statement 'BUF_POOL
BUFRS' reserves an ara of memory that can be
overliiyed with the memory templates (data
strcturs). The FORTH word BUFS acts just
like a varable an in fact th statement
'BUFR_POOL BUFRS' is the equivalent of
'V ARlALE3 BUFS 70 ALLOT'.

TI word ((an JJ ar use to index into the

arys (if thy ar not used. thn th addr of th
begig of th ary is left on th stack). 'I

fiR. 4 Buffer pol añer executing: REET_POL. All the _
:.NE pointers have been set.

word PUT is used to store data into a Strcture and
it knows what size th structur is (ie. long, word,
byte, etc.). Similary, GET is used to fetch th
contents of th data strctur. A wal-though
example with a stack picture ilustrates how th
data structus affect th stack in figure 2.

Figure 4 an 5 ilustrte how the word
define in figu 3 affect th daa strcturs.

32
GET_BUFFER
-~OATA

ii
S

ii
PUT

(32)
(32 \ address)
(32 \ address+)
(32 \ address+)4
(32 \ address+4 \ S)
(32 \ address++S*14)
()

fis. 2 Step by step stack ilustration. The value 32 is being
stoied into the 5th element of the data portion of a buffer
obtaied from the buer pol. H the data structuie changed

somewhat (ie. tli.;.NBXT field was removed) this code
would nol ne to be changed.

(1hll allots 74 bytes 01 memory)
(Initialize 1he buffer pool)

(address of bufer)
(point next bufer to prevloui)

(first pointer I1 a null pointer)
(address of first bufer In list)
(store address Into free list pointer)
(get a bufer from 1he pool)
(first bufer In free liit or 0 If empty)
(next bufer In free list,)
(Is now 1he first bufer In list)

~ Buffer pool afer execuiing: 'OET_BUF
oiUF SWAP PUT_BUFR .::OATA 10
ERSE'. This code iemoves a buffer from the pool and
fis its dala portion with zeroes.

3 A 32 bit FORm is used where the basic elemenl is a long word. Ths means that VARLE allots 4 byles.
4 ((doem'i ieally do anythig. It is an imediate word with a nul boy. It simply is there for ieadabilty and coud even be

included as par of a defition (ie. -::OA TAn to indicate that is an aryed element).

Proceedings of the 1987 Rochester Forth Conference 123

Proposed Structure Words
Ths section descrbe th words used in crat-

ing and. using data structure. 1b genera fonn of a
strctur defition is:

:STRUCTURE -:name:
11 01 modifers) structure-type -:name::)

STRUclURE;
where 'n(l indcates n or more of the enclosed

items and -:name:: is a new FORTH word. 1b
defig word :STRUCTURE an STRUCTURE; ar
anagous to : and;. They may not be neted.

:STRUClE (--)
_ makes th following word a FORTH definition
that exhbits th behaviour of a strctu-typ.
II must be used with STRUCl;.

STRUCfURE; (--)
. use to terminate a strctre defition. Must

be used with :STRUCT
Structure- Type

A strcture-typ is a word that exhbits 3
typs of behaviours:

1. Inside a structure defition, it crates a word
that ca be use as an inex into th stctur.

2. If it is executed, thn it crates a word an
alot th spac suffcient for that stcture-
ty (ie. LONG TEMP is the same as
VARIABLE TEMP in a 32-bit FORTH envirn-
ment) .

3. If it is used inide a colon defiiution thn it
does nothg except dictate how th acces
word wil behave (ie. : ... BYTE GET ... ; is
th same as : ... CC§ ... ; th is simar to
catig in C).

The following words ar preefid strcture-
typs.

LONG (--) - used to crate a 4 byte element.
SHORT (--) - used to create a 2 byte element.
B TI (--) used to crate a brte element.
BIT (--) - used to crate a bIt element.

Algnment is always done automatically. Th
mean that BYT ar don on a byte algnent an
SHORTs and LONGs ar done on a word algnent
(ths is dictated by th memory envinment. ie.
word-wide memory).

Modifers
A modfier m odfies th behaviour of stcture-

typs an acces operaons. 1b word may be used
inide or outside a strcture defition, or inside a
colon defition to 'cat' an acces operation. 1b
following words ar define and wil only modfy
the behaviour of the preefined strcture-typs with

th exception of ARY_OF which wil work on
any strcture-typ.

UNSID (--)
. used to obtai wihifted access on a bit field.

SHIFl (--)
- use to obta shifted access on a bit field (th

is th default settig for th BIT stctu-typ).

SIGNED (--)
- used to make the strcture-ty a signed typ

(th most signficant bit is sign extended to the
full width of th stack for GET or +PUT opera-
tions).

UNSIGNE (u)
- used to make th strcture-typ an unsignd typ

(Ts is default an is not reuire uness it is
desird to make it explicit or to recast an accss
with a FORTH defition).

ARY_OF (n--)
- use with any strctu-typ to create an ary n
of those ty.

Acces Words

Th following words ar used to access the
data strctre:

PUT (n \ addrss --)
- used to put a value into a data strcture. II is

anagous to i.

+PUT (n \ addr --)

- used to add a value to th contents of a data
strctur. It is analagous to + i.

GET (addss - n)
- use to access th value of a data strctur. It is

analagous to (g.

U(--)
- ths word is only for makg source code look
iuce an readable. It has no affect on compiled

code. It should be used with)J when indexig
an ary.

II (addrs\n -- addr+n*m)
- thi is used. to index into an ary where n is the

nth element of th ary an m is the size in
bytes or bits of the ary element (in the case of

a bit ary ths may be used to access a specific
bit. Othese th whole bit ary of up to 32
bits is accesed).

In addtion to the above word, sometimes a
word is ned to be used as a place holder in a tem-
plate.. Th alows th element in th strct to
occupy space but thre is no FORTH word created
for it. 1b word 'REERVE' seems lie a good
cadate for th job as it is meangful an it is not
liely to be used for othr thgs. Ths is siilar to
FI in COBOL.

:STRUCTURE BUFFER
LONG

7 ARRAY OF BITBIT -
10 ARRAY OF BYTE

STRUCTURE; -

.;.EXT
RESERVED
-::IN USE
-::DÄTA

fiii. 6 An example of a reserved ara. This is the same
buffer template as defmed in figure i except it now has s
bit to indicate that the buffer is in use. The bit is placed
as the least signicant bit by reserving the upper seven
bits for futur use. No word is creted for the reserved

bit field

124 The Journal of Forth Application and Research Volume 5 Number I

An Application of Structures

I work in a 32-bit FORTH enviroiient where
our progrs ar on th order of 300k byts an
thy ar about to double as we ar given more RA
to play with. Th progrs ar rathr lare an nsu-
aly involve more tha 1 person. Ths places a lot
of str on FORTH to fuction effciently as a
group progrmig language. Th use of data stuc-
turs, as descrbe' in ths docment, helps aleviate

some of th strain an maitai some confonnty
between programmers. Our progrs deal with
communication protocols which lend thmselves
quite wen to being descrbed in term of data strc-

turs.

Points to Ponder

1. ((and JJ might not be th best choice of word
for accessing an ary. However, thy ar
being proposed since (an) ar usualy use to

indicate arys an FORTH alady has a mean-
ing for thse word. Othr alternatives
include: '-;.' to indicate an inxig operation
or '.+' to indicate that a multiply an an addi-
tion ar pedormed.

2. By using ((and JJ in a postfi manr, thy ar
quite flexible sinc thy may be used without
being preceded by a data strctre (th daa
strcture may be left on th stack an ca be
inexed a number of ties).

3. Signd bit fields ar certaiy alowable by th
constrcts prented here an could lead to
some interestig applications. Sign extenson
simply extend th most signcant bit to th
width of th stack.

4. Since strcture tys may be used outside of a

data strcture declartion thy can be quite use-

fuL. In a 32-bit environment a vanable is 4

bytes. If it is just nsed as a flag, it would

make more sense to declar it as 'BYT
Fl G' an if - 1 is used as a tr incator, it
could be declard as 'SIGNED BYT FlG'.
Th flag would thn be accessd with PlI an
GET.

5. Th predefined stucture-tys could alo be
use in makg applications les tied to a cer-
tan FORTH (l6-bit or 32-bit), by using thm
to defi width-sensitive storage spaces.

6. Th strcture word proposed here always
align memory accordg to the enviroiient.
If th memory is ooly byte wide, thn no algn-
ment is needed. If th memory is word wide

thn SHORT and LONG declartions must be
aligned to word. If it is fou bytes wide,

thn SHORT declarons ar word algnd and

LONG declartions ar long word. algned. In
some ca it might be desirale to not algn
th declartions to memory. For thse cas, a
modfier is needed to force no algnent.

/

7. It would be nseful to add some word (maybe
:ACCES and ACCESS;) so that a user of this
extension would be able to defi thir own
accs word. Th could include word lie
'GET++' which could be use to access an ary

sequentialy.

8. Th access word could work on a whole struc-
ture if no element of that strcture is spci-

fied. For example, COMPLEX could be
declar as a strcture of two SIGNED
LONGS inexed by -:.REAL and
-:.IMGINARY (or FLOAT could be defied
as a strcture of a SIGNED LONG an a
SIGNE SHORT indexed by .:.MASSA
an -:'EXPONENT). If a GET is pedormed
on th strcture, both elements would be
return on th stack. If th strcture is
inexed, thn a GET ooly return the inexed
element. Th could be extended to al opera-
tors. (ie.. + or · could do complex math or
floatg point, if that iswbat is on th stack.

Likewie DUP could know if it should dup i
or n items.)

Summary

Th data strcture word ar flexible enough
to alow many siple uSes, yet by combinig thm
thy ar powerfl enough to alow manpulation of

lae data stcturs.

Nomenclatre and a methodology for data
strctur have been inuced. The ideas presented

here ar by no mean final but hopefuny th fre-
work has ben set for a powerfl extension to
FORTH.

Robert lames Chapman, is a Software Engineer
at IDACOM Electronics Ltd. He has used a 32 bit
FORTH in several large programming projects over
the last two years. He can be reached at Research
Centre One, Edmonton R&D Park. 9411 . 20th
Avenue, Edmonton, Alberta, Canada T5N lE5

