Proceedings of the 1987 Rochester Forth Conference

121

FORTH DATA STRUCTURES: A working proposal
by Robert James Chapman
IDACOM Electronics LTD.

little in the way of data structures. The

only permanent storage structure is a
variable. "However, due to FORTH's extensibill-
ty, it Is not limited to variables. A FORTH pro-
rammer may create any sort of data structure
that may be required, but the FORTH tools for
creating’ these structures are elementary and
require a lot of effort to work with complex
structures. Most of the time, no formal struc-
ture is used and the programmer must remember
throughout their program whether they are
accessing a word, a byte or even which bits In a
bit field. Also if the structure is changed at
some point, then all accesses to that structure
must be changed as well. As FORTH makes more

’- bstract: Standard FORTH contains very

inroads into |ar%e programming environments
(particularily 32-bit "environments), = extensions
An Example

A data structure is a template. When this

template is placed over an area of memory, it
grovidw meaning to certain portions of the memory
y defining the size and access. The first part of
utilizing a data structure is to define the template.
The specification of a template is analogous to
defining a FORTH word.

In figure 1, two structures! and six FORTH

will be needed to make FORTH a more accept-
able grou [.I>_rogrammlng |an&uage. An exten-
sion to FORTH Is proposed that will provide the
programmer with a small but powerful set of
tools for the creation and manipulation of data
structures. This data structure extension con-
sists of four basic data types, with modifiers.
These data type primitives may be used by them-
selves or combined to. create new data types.
The programmer can create data types agproprl-
ate for their environment and combine them to
manipulate complex data structures. This paper
is meant as a vehicle for Introducing this data
structure extension to FORTH ‘and for that rea-
son it will not go into detail about the implemen-
tation. Hopefully it will generate interest and lay
groundwork for further discussion in this area.

words have been defined. In the first structure,
BUFFER is being defined as a memory template and
it consists of two elements. The first element,
->NEXT?, is used to contain a pointer to the next
item in a link list and any access to it will be as a
long word. The second element of the structure,
->DATA , is an array of bytes. Any access to this
will be on a byte basis. Also, it is indexed on a

:STRUCTURE BUFFER this will be an item of a link list) o
LONG ->NEXT polinter to the next buffer) fig. 1 This is how a data structure
10 ARRAY_OF BYTE ->DATA (array of 10 bytes for data) for a link list buffer pool might
STRUCTURE; fook. The first structure defines

the template for a buffer which con-
sists of a pointer and 2 data por-

->NEXT — indexes to -

>DATA{[0]] — indexes to —
>DATA[[1]] — indexesto
->DATA [[9]] — indexes to

tion. ‘The second structure then
defines the buffer pool which con-
sists of a pointer for the beginning
of the list and an array of buffers
using the first structure. Now that
the templates have been defined,
they may placed over memory and

‘STRUCTURE BUFFER_POOL

LONG ->FREE_LIST

5 ARRAY_OF BUFFER ->BUFFER
STRUCTURE;

->FREE_LIST —— indexes to

of buffers)
pointer to first buffer in free list)
5 buffers as defined previously)

the '->" words may be used to
index to the specific locations.

->BUFFER [[0]] — indexes to

->BUFFER [[1] — indexes to

->BUFFER {[4]]— indexes to

The word :STRUCTURE and STRUCTURE; are similar to : and ;. They delineate the definition and create the template

word. LONG, CHAR and ARRAY_OF are simply elements of a structure. They make the following word into a FORTH

definition and assign certain characteristics to it.

2 The usc of '->" is familiar to C programmers and it is used to indicate that that word is indexing into a structure.

122

The Journal of Forth Application and Research Volume 5 Number 1

byte basis. The second structure consists of 2
elements. The first element, ->FREE_LIST, is to be
used as a pointer to a list. The second element uses
the first structure to define an array of structures of
type BUFFER which may be indexed with
->BUFFER to access the individual buffers. The
folowing code illustrates the - use of these
structures in defining an initialization word for the
buffer pool and words to obtain and return buffers
in an organized manner.

Figure 3 illustrates the use of the structure
words. The first statement 'BUFFER_POOL
BUFFERS’ reserves an area of memory that can be
overlayed with the memory templates (data
structures). The FORTH word B S acts just
like a variable and in fact the statement
'BUFFER_POOL BUFFERS' is the -equivalent of
"VARIABLE® BUFFERS 70 ALLOT",

The words [[and]} are used to index into the
amrays (if they are not used, then the address of the
beginning of the array is left on the stack). The

word PUT is used to store data into a structure and
it knows what size the structure is (ie. long, word,
byte, etc.). Similarily, GET is used to fetch the
contents of the data structure. A walk-through
example with a stack picture illustrates how the
data structures affect the stack in figure 2.

Figure 4 and 5 illustrate how the words
defined in figure 3 affect the data structures.

32 (32)

GET_BUFFER (32\ address)
->DATA (32\ address+4).

I (32\ address+4)*

5 (32\ address+4 \5)
)Jj (32\ address+4+5°14)
PUT ()

fig. 2 Step by step stack illustration. The value 32 is being
stored into the 5th element of the data portion of a buffer
obtained from the buffer pool. If the data structure changed
somewhat (ie. the ->NEXT field was removed) this code
would not need to be changed.

BUFFER_POOL BUFFERS
:RESET_POOL (--)
40
DO
BUFFERS ->BUFFER [[1]]
BUFFERS ->BUFFER [[| 1+]] ->NEXT PUT
LOOP
0 BUFFERS ->BUFFER [[0]] ->NEXT PUT
BUFFERS ->BUFFER ([4]]
BUFFERS ->FREE_LIST PUT ;
:GET_BUFFER (-- address | 0)
BUFFER_POOL ->FREE_LIST GET DUP
IF DUP ->NEXT GET
BUFFER_POOL ->FREE_LIST PUT
ENDIF ;
: PUT_BUFFER (address --)

BUFFER_POOL ->FREE_LIST PUT ;

BUFFER_POOL ->FREE_LIST GET OVER ->NEXT PUT

fig. 3 Buffer pool initialization and access words

{ this allots 74 bytes of memory)
(initlalize the buffer pool)

{ address of buffer)
(point next bqﬂer to previous }

(first pointer Is a null pointer)

(address of first buffer in list)

(store address Into free list pointer)
(get a buffer from the pool)

(first buffer in free list or 0 if empty)
(next buffer in free list,)

(Is now the first buffer in list)

(return a buffer to the pool)
(point to previous top item)
(new top item)

fig. 4 Buffer pool after executing: RESET_POOL. All the -
>NEXT pointers have been set.

'GET_BUFFER
->DATA 10

after execuling:

ﬁﬁi Buffer pool
GET_BUFFER SWAP PUT_B R
ERASE’. This code removes a buffer from the pool and

fills its data portion with zeroes.

3

A 32 bit FORTH is used where the basic element is a long word. This means that VARIABLE allots 4 bytes.

4 [f doesn't really do anything. It is an immediate word with a null body. It simply is there for readability and could even be
included as part of a definition (ie. ->DATA[[to indicate that is an arrayed element).

Proceedings of the 1987 Rochester Forth Conference

123

Proposed Structure Words

This section describes the words used in creat-
ing and using data structures. The general form of a
structure definition is:

:STRUCTUO%Emma)lm» “ |
1{ 0{modifiers} structure-type <name>
STRJC+URE;

where 'n{ }' indicates n or more of the enclosed
items and <name> is a mew FORTH word. The
defining words :STRUCTURE and STRUCTURE; are
analagous to ; and ;. They may not be nested.

:STRUCTURE (--)

- makes the following word a FORTH definition
that exhibits the behaviour of a structure-type.
It must be used with STRUCTURE;.

STRUCTURE; (--)
- used to terminate a structure definition.
be used with :STRUCTURE

Structure-Types

A structure-type is a word that exhibits 3
types of behaviours:

1. loside a structure definition, it creates a word
that can be used as an index into the structure.

2. If it is executed, then it creates a word and
allots the space sufficient for that structure-
type (ie. . LONG TEMP is the same as
VARIABLE TEMP in a 32-bit FORTH environ-
ment).

3. If it is used inside a colon definition then it
does nothing except dictate how the access
words will behave (ie. : ... BYTE GET ... ; is
the same as : .. C@ .. ; this is similar to
casting in C).

Must

The following words are predefined structure-
types.

LONG (--) - usedtocreate a 4 byte element.
SHORT (--) - usedto create a2 byte element.
BYTE (--) - usedtocreatea byte element.
BIT (--) - used to create a bit element.

Alignment is always done automatically. This
means that BYTEs are done on a byte alignment and
SHORTs and LONGs are done on a word alignment
(this is dictated by the memory environment. ie.
word-wide memory).

Modifiers .

A modifier modifies the behaviour of structure-
types ard access operations. ‘The words may be used
inside or outside a structure definition, or inside a
colon definition to ’cast’ an access operation. The
following words are defined and will only modify
the behaviour of the predefined structure-types with
the exception of ARRAY_OF which will work on
any structure-type.

UNSHIFTED (--)
- used to obtain unshifted access on a bit field.
SHIFTED (--)

- used to obtain shifted access on a bit field (this
is the default setting for the BIT structure-type).

SIGNED (--)

- used to make the structure-type a signed type
(the most significant bit is sign extended to the
full width of the stack for GET or +PUT opera-
tions).

UNSIGNED (--)

- used to make the structure-type an unsigned type
(This is default and is not required unless it is
desired to make it explicit or to recast an access
within a FORTH definition).

ARRAY_OF(n--)
- used with any structure-type to create an array n
of those types.

Access Words

The following words are used to access the
data structures:

PUT (n\address --)

- used to put a value into a data structure. It is
analagousto |, -

+PUT (n\address --)

- used to add a value to the contents of a data
structure. It is analagous to +1.

GET (address --n)
- used to access the value of a data structure. It is
analagous to @.

fte-)

- this word is only for making source code look
nice and readable. It has no affect on compiled
code. It should be used with]] when indexing
an array.

1] (address\n -- address+n*m)

- this is used to index into an array where n is the
n® element of the array and m is the size in
bytes or bits of the array element (in the case of
a bit array this may be used to access a specific
bit. Otherwise the whole bit array of up to 32
bits is accessed).

In addition to the above words, sometimes a
word is needed to be used as a place holder in a tem-
plate. This allows the element in the structure to
occupy space but there is no FORTH word created
for it. The word 'RESERVED' seems like a good
candidate for the job as it is meaningful and it is not
likely to be used for other things. This is similar to
FILLER in COBOL.

‘STRUCTURE BUFFER
LONG ->NEXT
7 ARBRAY_OF BIT RESERVED
BIT ->IN_USE
10 ARRAY_OF BYTE. ->DATA

STRUCTURE;

fig. 6 An example of a reserved area. This is the same
buffer template as defined in figure 1 except it now has a
bit to indicate that the buffer is in use. The bit is placed
as the least significant bit by reserving the upper seven
bi(uf_f?; future use. No word is created for the reserved
bit fie!

124 The Journal of Forth Application and Research Volume 5 Number 1

An Application of Structures

I work in a 32-bit FORTH environment where
our programs are on the order of 300k bytes and
they are about to double as we are given more RAM
to play with. The programs are rather large and usu-
ally involve more than 1 person. This places a lot

of strain on FORTH to function efficiently as a

group programming language. The use of data stuc-
tures, as described "in this document, helps alleviate
some of the strain and maintain some. conformity
between programmers. Our programs deal with
communication protocols which lend themselves
quite well to being described in terms of data struc-
tures.

Points to Ponder

1. [{ and]] might not be the best choice of words
for accessing an array, However, they are
being proposed since [and] are usually used to
indicate arrays and FORTH already has a mean-
ing for these words. Other
include: '->’ to indicate an indexing operation
or '*+' to indicate that a multiply and an addi-
tion are performed.

2. By using [[and]] in a postfix manner, they are
quite flexible since they may be used without
being preceded by a data structure (the data
structure may be left on the stack and can be
indexed a number of times).

3. Signed bit fields are certainly allowable by the
constructs presented here and could lead to
some interesting applications. Sign extension
simply extends the most significant bit to the
width of the stack.

4. Since structure types may be used outside of a
data structure declaration they can be quite use-
ful. In a 32-bit environment a variable is 4
bytes. If it is just used as a flag, it would
make more sense to declare it as 'BYTE
FLAG’ and if -1 is used as a true indicator, it
could be declared as 'SIGNED BYTE FLAG'.
The flag would then be accessed with PUT and
GET.

5. The predefined stucture-types could also be
used in making applications less tied to a cer-
tin FORTH (16-bit or 32-bit), by using them
to define width-sensitive storage spaces.

6. The structure words. proposed here always
align memory. according to the environment.
If the memory is only byte wide, then no align-
ment is needed. If the memory is word wide
then SHORT and LONG declarations must be
aligned to words. If it is four bytes wide,
then SHORT declarations are word aligned and

altematives

LONG declarations are long word aligned. In
some cases it might be desirable to not align
the declarations to memory. For these cases, a
modifier is needed to force no alignment.

7. It would be useful to add some words (maybe
:ACCESS and ACCESS:;) so that a user of this
extension would be able to define their own
access words, This could include words like
"GET++" which could be used to access an array
sequentiaily.

8. The access words could work on a whole struc-
ture if no element of that structure is speci-
fied. For example, COMPLEX could . be
declared as a structure of two SIGNED
LONGS indexed by ->REAL and
->IMAGINARY (or FLLOAT could be defined
as a structure of a SIGNED LONG and a
SIGNED SHORT indexed by ->MANTISSA
and ->EXPONENT). If a GET is performed
on the structure, both elements would ' be
reummed on the stack, If the structure is
indexed, then a GET only retums the indexed
element. This could be extended to all opera-
tors. (ie. + or * could do complex math or
floating point, if that is ‘what is on the stack.
Likewise DUP could know if it should dup 1
or n items.)

Summary

The data structure words are flexible enough
to allow many simple ises, yet by combining them
they are powerful enough to allow manipulation of
large data structures.

Nomenclature and a methodology for data
structures have been introduced. The ideas presented
here are by no means final but hopefully the frame-
wotk has been set for a powerful extension to
FORTH. .

Robert James Chapman, is a Software Engineer
at IDACOM Electronics Ltd. He has used a 32 bit
FORTH in several large programming projects over
the last two years. He can be reached at Research
Centre One, Edmonton R&D Park, 9411 - 20th
Avenue, Edmonton, Alberta, Canada TSN 1E5

