
Proceedings of the 1987 Rochester Forth Conference 11

A Stack-Frame Architecture Language Processor
R. D. Dixon

Computer Science Department
Wright State University

Abstract
An architecture for a fast 32-bit processor which is

designed to support a variety of languages for use in a real-time
setting is described. The processor is based on the augmentation
of a simple CPU with a set of smart auxilIary memories. These
memories allow stack mode and direct access over a fast bus which
is not shared with main memory. The possibility of hardware
support for context switching in this design makes it a good
candidate for demanding imbedded systems such as flight
computers.

Introduction
Producing reliable real-time systems is one of the most

difficult and important problems facing computer scientists. As
techniques in non-real-time areas yield more impressive results,
the expectations for imbedded systems increase. Much of the
progress in programming complex tasks has come from better
programming languages, and better software eng ineer ing
techniques. The difficulty in transfering these techniques to
real -time appl ications is that language and program structure
can have profound effects on response times.

This paper is a report on a research effort to develop a
flexible system approach to this problem. Many researchers in the
Forth community have been successful in handling real-time
systems where others have failed. Our research has in part been a
matter of following the wide variety of approaches being taken
and attempting to synthesize them. starting from the top, we are
looking for a language processor. By that we mean a system that
can effectively process many languages, from natural language
expressions to higher level programming languages to direct
expression of machine operations. We need to be able to deal with
different semantic models as well as different syntax and we need
to produce systems that do not lose the name real-time, even
though some operations, such as compilations, may be time
consuming.

Starting at the bottom, we have concluded that a fast
machine which contains the basic Forth operations as a subset of
its instruction set wil I assure an assembly language (i. e. a
superset of Forth) which will be easy to use. The experience with
imbeddings of very high level languages in Forth assures us that
this is a reasonable base on which to build.

The middle level languages such as C,
Fortran have been less well supported from a
The standard approach is to provide register
of context, called frames. We have chosen

Ada, Pascal, and
pure stack machine.
pointers to pieces
to provide direct

12 The Journal of Forth Application and Research Volume 5 Number I

hardware support for combined stack-frame structures by special
purpose VLS I chips.

Any system that uses interrupts is really a multi-process
system with the processor, its registers, and any other context
mechanism used by more than one program, as shared resources. It
is the cost of protecting the information in these shared
resources that limits performance of real-time systems.

Several approaches can be used to confine the damage:

l. Limit shared resources.

2. Restrict the occurance of process switches.

3. Provide hardware support for process switches.

Our approach is to partition the processor into two parts.
The first manages the computation but carries pratically no
status from one instruction to another. Thus we limit the shared
resources. The second part of the processor is all data: the
stack-frames. They are implemented in VLSI, and communicate over
a separate bus. This separate bus allows hardware support for
context switches which do not fol low a LIFO (a stack) protocol.
This is done by controlling the select lines of the stack-frame
chips.

In this paper we present the description of the machine, the
SFl, and in a companion paper we present a description of the
VLSI implementation.

The SFl is a 32-bit architecture with an instruction set
that combines some features of RISC machines, stack machines, and
micro-coded machines to achieve high performance. Included is a
description ~f the SFl architecture, the core instruction set,
how the SFl generates frames, condi tional branching, interrupts,
compatibility with C and block structured languages, and some
extensions. We consider the SFl as a point of departure for
exploring 32-bit data processor architectures for imbedded
systems.

Many of the ideas in this architecture
conversations and papers given at previous
Conferences. Alan Winfield, Ron Goodman, Phil
Haydon and the producers of the Nov ix chip
described their ideas. Lew Odette has been
providing understanding about support for
languages.

are derived for
Rochester Forth
Koopman Jr., Glen
have all freely
very helpful in

very high level

The SFl Architecture

The current implementation of the SFl has a memory bus and a
main memory addressing space which contains both data and in-
structions. The addresses are 32-bits long but most addresses
are word aligned and are thus multiples of four. Instructions are
32-bits long and all but main memory references execute in a
single cycle whose length is determined by the speed of memory.
An instruction is fetched every memory bus cycle and executed the

Proceedings of the 1987 Rochester Forth Conference 13

next. with a pipeline of depth two, a throughput of one instruc-
tion per cycle is obtained.

This implementation of the SFl has eight accessible struc-
tures called stack-frames. These structures are connected to the
ALU via a second bus called the stack bus. This bus operates at
twice the speed of the memory bus, having a read cycle and a
write cycle for every read cycle of the memory bus. Every instuc-
tion is read from main memory and causes a read from one stack-
frame and a write to another. The ALU operation is overlapped
with the stack bus write.

Memory data fetches and deposits are in effect DMAed with
the other operations and so occupy the whole machine for exactly
one cycle. Branches, which normally empty the pipeline, are re-
stricted and optimized so that in each case the effective
throughput is one instruction per memory bus cycle.

The following is a block level diagram of the current imple-
mentation of the SFl. The chip breakdown is roughly along the
lines of this diagram. (I

(Memory L(_ _l
/1\
\ /

Memory Bus((-/ \ / \
_\/
(Program
(Counter.(-

/ \ P

\ /

_\/-(L
(ALU L(_ _l/ _\/
((-/ \
_\ /-
(S L(L

/ \
\/.(L
(Control L(_ _l/ \

\ /
Stack Bus L_l/ \

_\ /-
(i L(L

/ \ / \
_\ /-
(R L(L

/ \
_\ /-
(L L(L

/ \
_\ /-
(G L(_l

/ \
_\ /-
(C L(L

_\ /-
(F L(L

The SFl core instruction set is given in a later section but
we describe the "feel" of it here. The instructions primarily
move data from one stack-frame to the arithmetic and logic unit
(ALU), and move the result of the previous operation to another
stack frame while performing the current operation. Stack-frames
are structures which have both direct access (memory or register
like) and stack access (push, pop). The ALU has a single register

14 The Journal of Forth Application and Research Volume 5 Number I

called TOS. A typical instruction,

ADD F (10) S (c) ;

pushes a copy of the TOS onto the stack-frame S, and adds the
contents of F (10)to TOS and places the result in TOS.

Access to main memory requires getting the address into TOS,
so that complicated addressing requires several instructions.

Al though jumps are optimized, condi tionals are not and so
they also must be constructed from other instructions.

A word address in the instruction stream is interpreted as a
j ump-to-subroutine (because the two low order bits are zero) just
as in Forth. Thus, it is easy to extend the apparent instruction
set of the machine by subroutine-instruct ion-augmentations (SIA).

The SF1 Core Instruction Set

Reaisters
The abstract SF1 machine has three registers that are car-

ried over from one instruction to another and each is refreshed
on each instruction. The first is calledTOS (which stands for
"top of stack") The result of every ALU operation is written to
TOS. It is also one of two operands to every ALU operation. The
PC register is the program counter. IR is the instruction regis-
ter. Every instruction is one word (32-bits) long. There are
three temporary registers, ALUI, which is the second operand to
every ALU operation, VALUE which is used to hold the old value of
TOS for certain operations, and PCJ which is used to save the
value of PC during the execution of the call subroutine instruc-
tion.

Main Memory

Main memory (MM (address)) is byte addressed with
words aligned so they are addressed on multiples of 4.
instruction set has only word (32-bit) operations.

4 byte
The core

stack-Frames

The SF1 can address structures called stack-frames. We use x
as a name for a generic stack-frame. We need a minimum of four
stack-frames to define the core instruction set, nominally we
name eight, but more can be used.

1. Frame Addressing

x may be addressed as a frame by giving a displacement in
the instruction. It is then a random access structure wi th
values x(O), x(1), . . . ,x(i), . . .

The maximum value for i is implementaion defined. Nominally
we use 16K.

Proceedings of the 1987 Rochester Forth Conference 15

2. Stack Addressing

x may be accessed as a stack to be pushed by the
destination, x(~), which has the effect:

For all i xCi) -~x(i+i), TOS-~x(O).

x may also be addessed as a stack to be popped by the
source, x(~), which has the effect:

x(O)-~ALUI, For all i, x(i+i)-~x(i).

Three of the stack frames are special purpose.

C The constant stack, C, is a special notation to allow the
passage of immediate data from the instruction to the
ALU.

For all i, C(i)=i.

I The I/O frame is used to address I/O devices.

P P is always addressed as a stack, but only P(O) is
defined and it is the PC.

Instructions
The syntax for instructions in bnf is:

~instructions~: =~sf-instructions~ I ~mm-instructions~ I ~jumps~

~sf-instructions~
The first category, which includes most instructions, is:

~sf-instrutions~: =~sf-inst~";" I ~sf-inst~"D;"

~sf- inst~: =~operation~~source~~destination~

~operation~: =~operation~resul t~ I ~operation-status~

~operation-status~: =~operation-resul t~"_ST"

~operation-resul t~: =LOAD I NOOP I ADD I SUBI SUBR I
SHI FTL I SHIFTRA I SHI FTRL
AND I OR EXOR

~source~: =x (displacement) I x (~) I x ()

~destination~:=x(displacement) Ix(~) Ix()

x := SIFIRILIGIClllp

16 The Journal of Forth Application and Research Volume 5 Number i

Comment: Only one displacement may be used in an instruction.
When x () is used, then the displacement from the other argument
is used. If there is no displacement in the other argument then
a displacement of 0 is used. Using C as a destination has the
effect that no write to a stack-frame is done.

The semantics of these instructions can be given symolical-
ly since the instructions are all the same length and the de-
coding is very regular. Here we use ":" to separate operations
that are done concurrently. In cases where the results of some
concurrent operations are inputs to others then we require that
the updates be made after inputs are latched. We use ";" to
separate sequential operations. Decoding of instructions is done
from the value in IR retained from the previous instruction
execution and is symbolized as decode(IR).

If IR contains ~operation~~source~~destination~; then the
execution is

decode (IR) ;

~source~-~ALUI : MM(PC) -~IR ;

PC+4-~PC : TOS-~~destination~ ~operation~ (TOS, ALUI) -~TOS

As an example let TOS=4, S (0) =5, and execute

ADD S (~) F (7)

Then F(7) becomes 4. TOS is 9, and S(O) gets the old value of
S (1) .

In the case where the ~destination~ is P, the transfer of
TOS. into the PC overrides the increment of the old PC.

The "0; 11 indicates a direct instruction which has a single
change in the above semantics.

TOS -~ ~destination~ is replaced by ALUI -~ ~destination~

Operations

The values computed by the ALU for the operations allowed in
the syntax is given by the equations below:

LOAD (TOS, ALUI) =ALUI

NOOP (TOS, ALUI) =TOS

ADD (TOS, ALUI) =TOS+ALUI

(Number representation is 32-bit, two's complement)

SUB (TOS, ALUI) =ALUI-TOS

SUBR (TOS , ALU I) =TOS - ALUI

Proceedings of the 1987 Rochester Forth Conference 17

SHIFTL(TOS, ALUI) =TOS*2

SHIFTRA (TOS ,ALUI) =TOSj2

SHIFTRL(TOS,ALUI)=TOSj2 and 011...1 (bitwise)

AND(TOp,ALUI)=TOS and ALUI (bitwise)

OR(TOS,ALUI)=TOS inclusive or ALUI (bitwise)

XOR(TOS,ALUI)=TOS exclusive or ALUI (bitwise)

For status operations, for example, ADD_ST, we return a status
word in TOS instead of the result. This is always the result of
the current operation. The status word always has the 32-bit form

OOOOOOOOOOOOOOOOOOOOOOOOOOvcnzOO.

v,c,n,c stand for overflow, carry, negative, zero respectively.
They are always set in the standard way.

Main Memory Instructions

There are only two ways to access main memory, fetch and
store, but they can be done with any other instruction.

..MM-instructions:.: =..sf-inst:. ("~" I "D~") I ..sf-inst:. ("-:." I 11 D-:'
11)

The operation of a memory fetch instruction ":sf-inst:.~ is:
decode (IR) ;

..source:.-:.ALUI : MM (PC) -:.IR ;

PC+4-:'PC : TOS-:...destination:. ..operation:. (TOS, ALUI) -:.TOS

MM(TOS) -:.TOS ;

Thus, as an example, LOAD C(1000) S(..) ~ pushes the old TOS onto

S and fetches the contents of MM (1000) into TOS.

The operation of a memory store instruction ..sf-inst:.-:. is:
decode (IR) ;

..source:.-:.ALUI : MM (PC) -:.IR ;

PC+4-:'PC : TOS-:...destination:. ..operation:. (TOS, ALUI) -:.TOS

TOS-:.VALUE ;

18 The Journal of Forth Application and Research Volume 5 Number I

VALUE-;:MM (TOS)

As an example here suppose TOS=3. Then execute

LOAD C(1000), S(O:) -;: .

MM (1000) becomes 3, 3 is pushed on S, and 1000 remains in TOS.
As before, in the direct instructións, "D~" and "0-;:",

the value for the stack bus write comes from ALUI rather than
TOS.

Jump Instructions

The syntax of jump instructions is

o:jumps;:: = JSR o:word.address;:1 JMP o:word-address;: .

The execution of the instruction JSR o:word-address;: is

decode (IR) ;

PC-;:PCJ : o:word-address;:-;:PC;

PCJ-;:ALUI : MM (PC) -;:IR

PC+4-;:PC : TOS-;:S(O:) : ALUI-;:TOS

The execution of the instruction JMP o:word-address;: is

decode (IR) ;

o:word-address;:-;:PC

MM(PC) -;:IR

PC+4-;:PC : TOS-;:TOS

The JSR can be omitted so that if we write the address XXX in
the instruction stream, it means JSR XXX.

The SF1 has no return instruction. The instruction

LOAD S (;:) P (0:) ;

serves that purpose. Because of pipelining, the next instruction
following that will be executed before the branch.

Instruction Codinq

The instruction semantics for the SF1 were given without
reference to the mapping between the instructions and the binary
coding of those instructions. This allows flexibility in the
mapping. A sample cOding is is given in the accompaning paper.

Proceedings of the 1987 Rochester Forth Conference 19

How the SFl Generates Frames

A useful organization that we adopt is that writing to I (2)
exchanges the Sand F stack-frames. This can be done in a single
cycle by Changing control states. Suppose we make the convention
that the arguments for a procedure are placed on the S-stack
before calling the routine. The called routine then allots local
variables on the stack and makes a frame so that local variables
and parameters may be addressed relative to that frame. Before
exi t the subroutine deletes the local variables and parameters,
places a single return value on the stack, restores the previous
frame and returns. The code in a subroutine AA which does this
is

AA: NOOP Se) I(2) ¡
NOOP C(O) F(~) D¡
NOOP C(O) F(~) D¡

LOAD G(77) S(~)¡

LOAD
LOAD
LOAD

F(l) S(~)¡
S(::) F(O)¡
F(2) S(~)¡

NOOP
NOOP
NOOP
NOOP

F(::) CO;
F(::) CO;
F(::) CO;
S (::) P(~) D¡

SO I(2);NOOP

swi tch the role of Sand F
Create a temporary variable
Create another one
Begin the subroutine body

What follows are sample
instructions

Using the stack leaves the return
address under and does not affect
the frame
F (1) is the first variable declared
F(O) is the last
F (2) is the last parameter

Suppose TOS contains a return value
End of the subroutine body
Begin deleting variables

Begin deleting parameters
Send return address to P
The return value is still in TOS
Restore Sand F

The overhead for a subroutine call using this convention
cycles each for the entry and exit and 2 cycles for
parameter and variable.

is 2
each

Condi tional Branchinq

The SFl has no conditional branches so they must be composed
of other instructions. Since we are not tied to any structure we
may optimize for the particular type of language being used. We
give here an example of some skip on condition instructions.

First assume FALSE=O, TRUE=4. We define an SIA (subroutine
instruction augmentation) skip_on_true, skip_on_false as routines
which expect a boolean (TRUE or FALSE) in TOS. These routines
delete the boolean and skip the next instruction on the appro-
priate condition.

skip_on_true :

20 The Journal of Forth Application and Research Volume 5 Number I

The return address is in TOS
The boolean is in S (0)

ADD S (;;) CO ; Add the boolean (4 or 0) to
the return

LOAD S (;;) P(..) return from subroutine
NOOP SO CO noop to execute before the

return
This routine is used as follows:

TEST which generates a boolean
skip_on_true
INSTRUCTION which might be skipped
CONTINUATION

The skip on true routine, including the call takes 4 cycles.
Similarly we define the routine

skip_on_false :
ADD C (TRUE) C () ;

SUBR S (;;) CO
LOAD S (;;) P (..)
NOOP SO CO

Add 4 to the return address
to make that the default
Use the boolean to decide
return
trailing noop

This routine takes 5 cycles.
An IF-THEN-ELSE structure using these constructs has an

overhead of 5 cycles.
Suppose we wish to generate a boolean value based on the truth

of the statement S (0) ":TOS. For every such condition we keep a
table in low memory such as:

zero_gt_table :
FALSE
FALSE
FALSE
FALSE

FALSE
FALSE
FALSE
FALSE

TRUE
TRUE
TRUE
TRUE

FALSE
FALSE
FALSE
FALSE

The meaning of this table is related to the fact that any status
instruction generates a word

0000000000000000000000000 Ovcnz 00

If the status word is used' as an index into the table above it
generates a boolean value for each of the 16 status values. The
table given here gives a TRUE precisely when n is 1 an z is O. A
table which accounts for overflow would have different values in
the last two rows.

The code to accomplish the stated purpose is

SUB ST S(;;) CO produce the
status word

Fetch the booleanADD C(zero_gt_table) CC) ~

Proceedings of the 1987 Rochester Forth Conference 21

from the table

This code takes 3 cycles. A separate table is necessary for
each type of condition.

Interrupts on the SFl

The exact nature of interrupt control is frequently deter-
mined by the demands of the devices and should not be too
tightly coupled to processor design. Thus, we assume that an
interrupt controller chip will mediate between the devices and
the SF1. Control of these devices and communication between the
interrupt controller chip and the SFl will take place through the
I frame. When an interrupt takes. place the following happens.
During an instruction fetch cycle the memory bus is taken over by
the controller and it inserts an address onto the line. In the
normal course of things the SFl interprets this as a jump to
subroutine. This causes a vectored interrupt to the location
placed on the bus. The return address stored is that of the
instruction following the address which was placed on the memory
bus by the SFl during the interrupt cycle. The return from
interrupt is

ADD C(-4) CO
LOAD S (;:) P (0()
NOOP SO I (?) This resets the stacks and the

interrupt hardware

For this basic interrupt scheme, the interrupt service rou-
tine will be using the interrupted process's stack-frames. For
many systems this will be satisfactory. In other systems, it may
be useful for the interrupt to trigger a complete change of
context. This can be done by the interrupt controller or by the
SFl program through its I frame. The mapping between stack-frame
hardware and instruction fields is redefined by such operations.

It should also be mentioned that interrupts should be dis-
abled for one instruction following any instruction that writes
to P. This is usually the return instruction and is easy to
detect by the P hardware. The return instruction is really takes
place over two cyles and no machine can suffer interrupts in the
middle of an instruction.

C and Other Block structured Lanquaqes

In the C benchmark program below, the arguments and local
variables are nested in stack-frames. This system requires one
stack-frame for each visible block. In C this requires three; the
local stack, the arguments and local variables, and the global
variables. Arrays and variables to which pointers are passed
must reside in main memory.

In a language where arbitrary nesting of blocks is possible,
the entire block structure must be maintained in main mem-
stack-frames can be used effectively to maintain the "dis-
lists" of pointers to the bases of storage of each nested

then
ory.
play

22 The Journal of Forth Application and Research Volume 5 Number i

block. In general, an access of this type takes three cycles. An
example of accessing the third word in the the seventh frame is

LOAD F (6) S (-:)
ADD C (8) C 0 ~

F (6) is the seventh element

An array with its index on the stack can also be accessed in
two cycles

ADD F(6) CO
ADD C (8) C 0 ~

In summary, the stack-frames, at their best, give very fast
access to local data from a program. If the context is too deeply
nested or too large for the implemented stack-frames then the
stack frames can act as fast and very flexible register sets.

Processes

Process context can be switched very fast as far as the ALU
is concerned because it has no registers. The stack-frames belong
to a process so they must be switched in hardware, much as
register sets are switched in a standard minicomputer, if the
switches are to be very fast. If such hardware is not provided.
Then they must be drained and restored as is usually done with
microcomputers. The stack bus and the ability to provide as many
stack-frames as needed makes the hardware switching, which takes
only one cycle, attractive for demanding real-time applications.

An Example of ~ Compiled £ Proqram

The following example is a simple bubble sort program writ-
ten in naive C.

bsort (l ist, nn)
int list() ,nn;
(

int xx, yy, qq, zz i
xx=o i
qq=O i
while (qq==O)
(

qq=l i
xx=o i
while (xx-:nn)
(

yy=xx+ 1 i
if (list(xx)-:list(yy))
(

zz=list(xx) i
list(xx=list(yy) i
list(YY)=ZZi
qq=O i

Proceedings of the 1987 Rochester Forth Conference

xx=yy ;

23

In the hand compiled version of this program, let the fol-
lowing abbreviations be used:

qq is F(O), yy is F(l), xx is F(2), nn is F(3), list is
F(4). frame is NOOP S(), I(2);

bsort:
frame
NOOP C(O) F(~) D;
NOOP C (0) F (~) D;
NOOP C(TRUE) F(~) D;
LOAD qq S (~)
skip_on_false
bsortl
NOOP F(::) CO
NOOP F(::) CO
NOOP F(::) CO
NOOP F(::) CO
NOOP F(::) CO
LOAD F (::) P (~)
frame

bsorti:
LOAD C(FALSE) S(~)
LOAD S (::) qq
LOAD C (0) S (~)
NOOP SO xx
SUBR_ST nn C () ;
ADD C (zero gt table) S ()
skip_on_faise -
bsort2
SUB qq C ()
LOAD S (::) P (~)
NOOP S 0 C ()

bsort2 :
LOAD xx S (~)
ADD C (4) C ()

LOAD S (::) yy
LOAD list S (~) ;ADD xx CO ~
LOAD list S (~) ,
ADD yy C 0 ~
SUBR_ST S(::) CC) ;
ADD C(zero gt table)
skip on true -
JMP bsort3

exchange F and S
First local variable
Second loacal variable
true is 4

While test
Body of the while
Delete variable
Delete variable
Delete variable
Delete parameter
Delete parameter
return

Body of the outside loop

qq gets the FALSE

Now xx gets the 0

~ returns a true if negative
while test
Body of loop
return test is fast
return

Body of the inside loop

Increment is 4 because of size
of words

Array addressing takes 2
instructions and 3 cycles

Convert status to true or falseCO;
if test
body of the if

24 The Journal of Forth Application and Research Volume 5 Number I

LOAD list S(c:)
ADD xx C () Address of list (xx)
LOAD list S (c:)
ADD yy C 0 Address of list (yy)
LOAD S (0) S (c:) ~ list (xx)

LOAD S (0) S (c:) ~ list(yy)
LOAD S (2) CO -~ write in list(xx)
LOAD S (~) CO Drop address
LOAD S (~) CO -~ write in list(yy)
LOAD S (~) CO Clear stack
LOAD S (~) CO
LOAD C (true) S (c:)
LOAD S (~) qq

bsort3
LOAD yy S (c:)
NOOP S 0 xx
SUB_ST nn C ()
ADD C(zero_lt_table) C()
SUB S (~) CO
LOAD S (~) P (c:)
NOOP SO CO

Condition is at the end of loop
~

return

skip_on_false:
as above

Assuming a 10 Mhz clock on the SF1, this program runs about 40
times faster than C86 on the Zenith 158 and about 2 times as fast
as C on theSUN-3.

Inference Machines on the SF1

L.L.Odette and W. H. Wilkinson have reported at the FORML 86
Conference in the paper "Prolog at 20,000 LIPS on the Novix?".
They suggest such performance on the (to be released) 10Mhz
version of the 16-bit Novix chip which is a pure stack machine.
The SF1 has most of the capabilities of the Novix and many that
the Novix does not. Following Odette and Wilkinson's model we
expect the performance to be comparable to Novix system. That
would match the SF1 performance on C, twice the performance of
the SUN-3 or the VAX-780 on this type of problem.

Extensions of the SF1---
ALU Operations

The addition of operations to the ALU is consistent with the
SF1 design provided the operation has at most two inputs and
produces a single 32-bit result. An example of an instruction
that could be there but is not is an arbitrary shift instruction.
The main memory operations should be extended to include byte

Proceedings of the 1987 Rochester Forth Conference 25

operations. Internalizing some of the tables like the
zero_gt_table might be reasonable. In general, a more powerful
condi tional branch facility would be helpful.

Operations like multiply and divide might be handled care-
fully within theALU. A multiply which yields a 32-bit result is
possible. One operation for the high order 32-bits, another for
the low order 32-bits is more inclusive. A 32-bit divide and a
32-bit remainder operation suffice for longer divides.

I/O Space operations

In order to keep the ALU chip simple, more complicated
operations can be done on chips connected to the I/O bus. Thus a
floating point chip or an array processer could be placed there.
In this case, these chips will retain status information over
several cycles. It will then be necessary to shut off interrupts
during the several cycles they take to operate, or have them
stack inputs and outputs or to have them be virtual for each new
process.

