
Proceedings of the i 987 Rochester Forth Conference 135

OBJECT ORIENTED LOCAL VARIABLES / DATA STRUCTURES FOR F83

ABSTRACT

An integrated package of compiler extensions providing symbolic
object oriented programming for local variables and data
structures is described. The user syntax is simple, consistent,
and greatly enhances programming ease and readability of the
resul tant code. The data structures compi ler uses extended
memory (32 bi t addressi ng) operati ons to permi t ful i use of
available memory. The approach emphasizes runtime efficiency at
the expense of a small increase in compiler complexity.

Th is paper summar i z es
paper di scussi ng the
has been submi tted
Research.

the features of the extension package. A
details of the approach and implementation
to the Journal of FORTH Appl ication and

EXTENDED MEMORY OPERATIONS

A set of extended memory operators based on a 32 bi t address or
pointer is added to the F83 virtual machine emulation. These
operators (X~, X! , X2~, X2!, etc.) are di scussed in a compani on
paper enti tl ed "Extended Memory Operations for F83".

The memory immediately after the 64 kilobyte dictionary
is def i ned as a HEAP memory resource and is allocated as
by the word HEAPALLOT.

segment
needed

OBJECT ORIENTED DATA STRUCTURES

The Data Structures compiler is an example of what might be
termed a 'phrase compiler'. The approach makes use of a set of
defining words to generate a tree of 'datatype' elements which
define the phrase compiler action. Each element of the tree
resol ves the nex t level in terms of a i i mi ted 'i ocal' vocabul ary
instead of the currently active search order. Control is
returned to the normal Interpreter /Compi i er onl y after the phrase
has been completely processed.

The Data Structures defining syntax is similar to that described
by Pountain (POUN86J in the Aug. 86 BYTE. A new datatype is
def i ned by the sequence:

TYPE) (newdatatypename)
(subel ement decl arati ons) or (si ze declaration)
(newdatatype local operations)
ENDTYPE)- ,newdatatypename)

A defining word (newdatatypename) is created in the CURRENT
vocabulary which may be used to create specific instantiations of

136 The Journal of Forth Application and Research Volume 5 Number I

def i nit i on. The symbol s i 1 to i k map onto the input stack
configu~ation and must ag~ee in number, size (16 or 32bit) and
order with the expected inputs. The compiler symbol (separates
those inputs i 1 to kh that are to remain from those inputs ih+l
to i k that are to be di scarded. The symbol/separates the
inputs from any tempo~ary variables tl to tm. Finally the symbol
) indicates the beginning of the output variables 01 to Oj which
determine the number, size and order of the outputs left on the
stack after execution of the word (name). Any local symbol may
represent a 32 bi t quanti ty by following it (after a space) wi th
the symbol #. The closed parenthesis ends the declaration phase
and a stack frame size literal followed by a stack frame setup
wo~d F: are automaticall y compi led to begin the body of the
definition. Normal compilation of (body of definition) follows.
The redefinition of (;) compiles a stack cleanup sequence and
flushes the i ocal symbol s bef ore ex ecut i ng the normal (;).

Input and output 'lists' (unspecified number of elements) on the
stack and pointers to data structures may be declared and
processed using additional features described in the full paper.
The local poi nter vari abl es allow any area of memory to be
ove~layed.by any datatype structure and processed symbolical~y.

The ~emainde~ of the definition is compiled in the same manner as
any othe~ FORTH word. Reference to a i ocal symbol resul ts in a
stack frame offset being compiled as either a constant or a
literal. The programme~ then uses a stack frame fetch or store
(S~.S!.S2~.S2!) similar to ordina~y variables. In addition, the
mechani sms of the Data Structu~es compi i e~ are used to provi de
gene~ic ~ and ope~ations fo~ both 16 and 32 bit local
va~i abl es.

The symbols whichappea~ in a local va~iable decla~ation list
exist only during the compilation of that definition. Those
symbols a~e forgotten and the memo~y reclaimed when compilation
is complete. Since the local symbols a~e at the top of the
sea~ch o~der during the compilation they will conveniently mask
othe~ wo~ds in the vocabulary with identical names.

An examplé of using the local va~iable compilation mode to code a
second orde~ integer pol ynqmi al y=a+bx+cx2 = a+x (b+cx) woul d be:

I POL Y
C ~

F(A B C X) Y)
X~ * B~ + X~ * A~ + Y!

Sou~ce code is avai labl e on East Coast Forth Board (7Ø3-442-8695)
in f i le ROHDAF83. BLK.

REFERENCE

(POUN86 J
Magazine,

Pountai n, Di ck;
August 1986.

"Obj ect-Ori ented FORTH", BYTE

