Proceedings of the 1987 Rochester Forth Conference 135

OBJECT ORIENTED LOCAL VARIABLES / DATA STRUCTURES FOR F83

ABSTRACT

An integrated package of compiler extensions providing symbolic
object oriented programming for local variables and data
structures is described. The user syntax is simple, consistent,
and greatly enhances programming ease and readability of the
resultant code. The data structures compiler uses extended
memory (32 bit addressing) operations to permit full use of
available memory. The approach emphasizes runtime efficiency at

the expense of a small increase in compiler complexity.

This paper summarizes the features of the extension package. A
paper discussing the details of the approach and implementation
has been submitted to the Journal of FORTH Application and
Research.

EXTENDED MEMORY OPERATIONS

A4 set of extended memory operators based on a 32 bit address or
pointer is added to the F83 virtual machine emulation. These
operators (X@, X!, X2@8, X2!', etc.) are discussed in a companion
paper entitled "Extended Memory Operations for F83".

The memory immediately after the &4 kilobyte dictionary segment
is defined as a HEAP memory resource and is allocated as needed
by the word HEAPALLOT.

OBJECT ORIENTED DATA STRUCTURES

The Data Structures compiler is an example of what might be
termed a ’*phrase compiler’. The approach makes use of a set of
defining words to generate a tree of *datatype’ elements which
define the phrase compiler action. Each element of the tree
resolves the next level in terms of a limited ’local’ vocabulary
instead of the currently active search order. Control is
returned to the normal Interpreter/Compiler only after the phrase
has been completely processed.

The Data Structures defining syntax is similar to that described
by Pountain [POUNB&] in the Aug. 84 BYTE. A new datatype 1is
defined by the sequence:

TYPE> <newdatatypename?’)

<subelement declarations> or <size declaration’>

<newdatatype local operations’

ENDTYPE> <newdatatypename’

A defining word <newdatatypename> is created in the CURRENT
vocabulary which may be used to create specific instantiations of

136 The Journal of Forth Application and Research Volume 5 Number 1

definition. The symbols i1 to ik map onto the input stack
configuration and must agree in number, size (146 or 32bit) and
order with the expected inputs. The compiler symbol < separates
those inputs il to kh that are to remain from those inputs ih+1
to ik that are to be discarded. The symbol / separates the
inputs from any temporary variables tl1 to tm. Finally the symbol
» indicates the beginning of the output variables ol to aj which
determine the number, size and order of the ocutputs left on the
stack after execution of the word <name>. Any local symbol may
represent a 32 bit quantity by following it (after a space) with
the symbol #. The closed parenthesis ends the declaration phase
and a stack frame size literal followed by a stack frame setup
word F: are automatically compiled to begin the body of the
definition. Normal compilation of <body of definition> follows.
The redefinition of {3} compiles a stack cleanup sequence and
flushes the local symbols before executing the normal {;3.

Input and ocutput “lists’ (unspecified number of elements) on the
stack and pointers to data structures may be declared and
processed using additional features described in the full paper.
The local pointer variables allow any area of memory to be
overlayed by any datatype structure and processed symbolically.

The remainder of the definition is compiled in the same manner as
any other FORTH word. Reference to a local symbol results in a
stack frame offset being compiled as either a constant or a
literal. The programmer then uses a stack frame fetch or store
(8@, s5!,52@,82!) similar to ordinary variables. In addition, the
mechanisms of the Data Structures compiler are used to provide
generic @ and ! operations for both 16 and 32 bit 1local
variables.

The symbols which appear in a local variable declaration list
exist only during the compilation of that definition. Those
symbols are forgotten and the memory reclaimed when compilation
is - complete. Since the local symbols are at the top of the
search order during the compilation they will conveniently mask
other words in the vocabulary with identical names.

An example of using the local variable compilation mode to code a
second order integer polynomial y=at+bx+cx2 = a+x (b+cx) would be:

: IFPOLY FCABCX >Y)
Ce X@ * BB + X@ * AR + Y ! 5

Source code is available on East Coast Forth Board (7903-442-8695)
in file ROHDAF83.BLK.

REFERENCE

EFPOUNBS] Fountain, Dicks; "Object-Oriented FORTH", BYTE
Magazine, August 19864.

