Proceedings of the 1987 Rochester Forth Conference 149

A UNIFICATION OF SOFTWARE AND HARDWARE;
A NEW TOOL FOR HUMAN THOUGHT

Glen B. Haydon

WISC Technologies, Inc.
La Honda, CA 94020

The following discussion briefly develops a philosophical basis with which to unify the
hardware and software tools of a computer development system. The result is an improved
match between software and hardware.

The nature of the human mind and thought processes are not understood. However,
there appears to be a mismatch between human thought and the rapidly growing use
of computers as tools to help men think. Software engineers and hardware engineers
seem to be working in different directions. If we could unify the software and hardware
of computers along new lines, we might find a better tool to aid us in our intellectual
endeavours. Perhaps a unification of software and hardware would provide a better model
to simulate part of the activities of the human brain.

Origins of Language

The development of speech and natural languages produced a tool for the develop-
ment of human thought. In an interesting paper by James Cooke Brown and William
Greenhood entitled “PATERNITY, JOKES AND SONG: A POSSIBLE EVOLUTION-
ARY SCENARIO FOR THE ORIGINS OF MIND AND LANGUAGE " , (Cultural Fulures
Research, Vol VIII, No.2, Winter 1983/84), a new perspective to the development of natural
languages is presented. The paper is a long one and carefully argued with many references.

The origins begin with the development of speech as a tool for communication. Along
with communication has come the internal activity of the mind, thinking. In the develop-
ment of language, the burden of disambiguation grows geometrically with every increase in
sentence length. The development of grammar attempts to accomplish the disambiguation.

A Logical Language - LOGLAN

In his FORWARD to LOGLAN I: A LOGICAL LANGUAGE , 3rd Ed. (The Loglan Insti-
tute, Inc. 1975, 1701 Northeast 75th Street, Gainesville, FL 32601} James Cook Brown
begins:

“At the beginning of the Christmas Holidays, 1955, I sat down before a bright fire
to commence what | hoped would be a short paper on the possibility of testing the social
psychological implications of the Sapir-Whor{ hypothesis [relating lanugage to thought].
| meant to proceed by showing that the construction of a tiny model language, with a
grammar borrowed from the rules of modern logic, taught to subjects of different nation-
alities, in a laboratory setting, under conditions of control, would permit a decisive test.
I have been writing appendices for that paper ever since. ... ”



150 The Journal of Forth Application and Research Volume 5 Number 1

And now, over thirty years later, the appendices continue to develop. The language
became known as LOGLAN. It was described in the literature, in the June 1960 issue of
Scieniific American. Books and publications have continued over the years. Within the past
5 years the language has been refined with a completely unambiguous machine parsable
grammar. Currently, a number of minor revisions to the language are being summarized
and a new publication should be forthcoming before long. ~

History of Computing

Several years ago, Hans Nieuwenhuyzen called my attention to two books. The first
was A HISTORY OF COMPUTING IN THE TWENTIETH CENTURY, (N. Metropolis, J. Howlet
and Gian-Carlo Rota, Editors, 1980 Academic Press.) Computers have changed with time.
Originally, von Neumann thought of the computer as a number cruncher. Perhaps it was
Turing who showed that computers can be symbol-manipulating machines. The hardware
design of computers started from these perspectives. Early programming languages dealt
with methods trying to use the newly developed hardware to solve real problems.

The second book was HISTORY OF PROGRAMMING LANGUAGES, (Richard L Wexelblat,
Editor, 1981, Academic Press). The history traces the development of many languages to
bridge the gap between real problems and the tools provided with computer hardware. The
computer language, FORTRAN was developed as a numerical scientific number cruncher
and continues to this day as a major programming language for scientific computation.
Other languages which immediately followed were also number crunchers. These were
batch processing languages. On-line languages were devised nearly a decade later.

Business applications with number storage and crunching came later. The introduc-
tion of string and list processing followed. It was always a problem to make the newer
application requirements fit on hardware designed for number crunching. At best, the fit
has not been optimal.

Thus the problems addressed with computer hardware expanded from number crunch-
ing to assisting in other areas of human thinking and problem solving. As software en-
gineers developed languages, the importance of a divide and conquer approach became
apparent. Structured programming became the tool of software engineers. Libraries of
program modules were developed. However, the hardware techniques of number crunching
do not lend themselves to efficient execution of structured programs requiring sequences
of subroutine calls to a variety of modules.

Progress in Hardware Design

In conjunction with the developing languages, the hardware engineeyrs made great
strides to support the computational applications addressed by the early languages. The
hardware design has been oriented to improving the speed of execution of sequential op-
erations. :

In hardware development there has been a trade off between the speed and semantic
content of the operations and the physical limitations of the speed of memory access. The
increased complexity of instructions increased semantic content of each operation, but
with many operations taking many machine cycles. Other techniques have been developed
to increase the speed of memory access. '

In an alternate approach to increasing hardware speed, hardware designers have tried
to reduce the number of operations with each instruction, each of which would then require



Proceedings of the 1987 Rochester Forth Conference 151

only a single processing cycle. Many registers are used rather than slower machine memory
to further increase speed.

In the course of these hardware engineering efforts, little attention has been given to
efficient subroutine calls.

Progress in Software Design

Software designs have taken other directions. Compilers were developed to translate
the newer languages to the machine language of the hardware. Modern language optimiz-
ing compilers have many different ways of handling subroutine calls, Not infrequently,
when speed is required, the subroutine is simply duplicated in line. Though longer, such
machine code will run faster. .

Compilation is essentially a batch process. Often multiple passes through the source
code are required. Batch processes are slow. A program needs to be completely recompiled
to test it. It used to be that such batch programs took overnight to run. Compilers have
been designed to run ever faster, but they still require minutes to process. Program
development is inhibited by the slow turn-around of batch processing.

With structured programming, it would be desirable to have an instantaneous turn-
around on tests of new procedures as they are written. A software development system
should also have instantaneous turn-around on tests of connected structures in building
the final program. The conventional development systems requiring a compile, load and
go for each test is not conducive to good software development.

The Hardware-Software Mismatch

The sequential methods of hardware design are mismatched with structured program-
ming. Sequential methods are also a mismatch with the thought processes of the software
developer. The process is almost a random jumping of ideas in the process of thinking.
Structured programming seems to be better matched with the thinking process. As such
it provides a tool for simulation and study of thought processes. For example: What are
the differences between left and right hemisphere processes?

Computer software is divided into smaller and smaller procedures. The process is
similar to the divide and conquer process of problem solving. As programs are written,
regardless of the language used, they tend to follow a process of natural thought. A
translator is required to take a programming language following thought processes and
structured programming, and produce machine code which can be run inefficiently on
hardware designed to run sequentially.

Unification of Hardware and Software

A rethinking of the hardware design is necessary to better match the direction of
software development. Rather than sequential efficiency, what is needed is subroutine
call efficiency. It would be ideal if subroutine calls could come for free. This is one of
the results of the ideas presented in Phil Koopman Jr’s invited paper at this conference.
Some of those ideas are summarized here.



152 The Journal of Forth Application and Research Volume 5 Number 1

Stack oriented Machines

Samelsonrand Bauer described an ALGOL translator using multiple stacks. (See A
HISTORY OF COMPUTING IN THE TWENTIETH CENTURY referred to above.) Though a US
patent was issued on a full wiring diagram, no hardware was built. At the time, they
turned to implementing their ideas in software. Prior to the recent work of Phil Koopman
Jr, hardware designers of general purpose processors have not adopted the stack concepts
in developing hardware better suited to structured programming.

It is time to adopt the proposals of Samelson and Bauer. An efficient multiple hard-
ware stack machine will contribute to a functional unification of hardware and software.
Such a hardware design provides for subroutine calls with no cost in processor time. It
contrasts dramatically with the time penalty for subroutine calls.

Writable Control Store

Machine operations should have the semantic content optimized according to the
specific requirements of new applications in the software development process. This can
be done by using software control of hardware components with writable control store
machines. The process divides the hardware components into smaller pieces and allows
the software engineer to assemble their functions into optimal operations according to the
application requirements. :

In the history of computers, writable control structures have been used. Bit slice
technology with writable instructions are available but have not been widely exploited.

A Unified Design

A rethinking of hardware design, has led to a writable instruction set computer
(WISC) interfaced with multiple dedicate hardware stacks as proposed by Samelson and
Bauer.

The first results of such a rethinking of hardware design were presented and discussed
at the 1986 Rochester Forth Conference by Phil Koopman Jr and Glen B. Haydon. The
design was available then as a wire-wrapped kit. The design is now available on a pair of
printed circuit boards.

Also at the 1986 Rochester Forth Conference, Phil Koopman Jr demonstrated the
operation of his initial design of an enhanced system. During the past year the design
has undergone several itterations. At this, the 1987 Rochester Forth Conference, Phil
Koopman Jris presenting an invited paper in which he details his concepts of the problems
and implementation of a hardware design to solve the problems.

Conclusions

I have endeavored to review some of the more philosophical ideas leading to a bet-
ter match between the computer tools available and the human thought processes. The
result has been a unification of structured programming of software engineering with the
necessary hardware to run such software efficiently.

. To me, one of the greatest potential powers of modern computers is the ability to
simulate problems. Perhaps the unification of software and hardware will provide an
improved tool to better understand man’s way of thinking and problem solving.



