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ABSTRACT

We have developed a simple direct execution architecture for a 32 bit Forth microprocessor.
The processor has two instrction tyes: subroutine cal and user derined microcode. The

processor's data path was designed so that most Fort primitives can be represented with one
microcode instrction that executes in a single cycle. The processor uses a single large,
unform address space (231 words) for program data, and stack storage. The top portons of
the parameter and retu stacks are cached in the microprocessor to improve performance

whie retaig a single data path between memory and the CPU. A Fort outer interpreter

that supports inline code expanion was written.

1. Introduction

This paper describes the architecture of
a 32 bit microprocessor designed for the

direct execution of Forth program. Two
versions of ths architecture have been

implemented: a prototype built with 4"m

Silcon on Sapphie (SOS) and a complete
version built with 3"m bul CMOS. The
processor has a large uDÜorm address space
and operates on 32 bit quantities. It alo
has good program execution performce
because most Fort primtive operations are
executed in one cycle. This single cycle
execution and the sma number of
instrction formats makes ths architectue

another example of a Reduced Instrction

Set Computer (RISC) (Patterson85).

For many years our group has used
Forth to program embedded computers,
especially for spacecraft We recently buit
a bit-slice board level Fort processor

(Balard84) for use in the Hopkis
Ultraviolet Telescope (HUT) which was to
have flown on th Space Shutte in Mach,
1986 (reschedulod to Januar. 1989). The

project described in th paper was
undertaken to show that a systems design

group could cost effectively develop and
use custom VLSI circuits to enhance system
capabilties. A single chip Forth processor

could replace the 72 in2 circuit board used
for the HUT processor and increase
performance by a factor of 5-10 whie

operatig on 32 bit rather than 16 bit
numbers. Because of lack of tie and
budget and because most of the embedded
systems we have buit are not available for
study., no rigorous program based
architectue studies were performed.
Consequently, many of our architectual
decisions were based on simple
experiments, experience, and intuition.

Ths paper is a summar of our work (so
far) on Fort processor architectues. More
detaed treatment of the topics dicussed in
ths paper can be found in (Fraeman86),

(Hayes86). and (Wilam86). The paper
begins by identiying three featues of
Fort that benefit from hardware support

and dering an instrction set to provide
th support Next, our processor's data
path and how it implements Fort's
primtives is described. The following
section discusses the on-chip stack caches.

Section 5 briefly describes some special
featues of the Forth outer interpreter
needed to support a direct execution
machie. Finaly. some results from both
implementations of the architectue are

described.

· It la difcult to prome a pro¡r wrtten for a
laellte af the utellte hil been launched into a

60 mie polar orbit.
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i. Instruction Set Architecture

Three aspects of Fort can benefit from

architectual support The rirt is Fort's
iner interpreter. In Fort imlementations

on traditional processors, the iner
interpreter emulates the fetch-execute cycle

of an abstract Forth machie. This
overhead typically uses 35%-50% of the
CPU tie. Our processor architecture
alows most Fort primitives to execute in
one instrction and the iner interpreter
simply becomes the (etch-execute cycle of
the processor.

The second featue of Fort that can
tae advantage of architectual support is
Fort's two stack progrg modeL.
Most Fort primtives tae operands from
one or both stacks, increment or decrement
stack pointers, and retu a result to one of
the stacks. To achieve our goal of
executig one Fort primtive per cycle,
these stack accesses must also occur in one
cycle. Our solution is to cache the tops of
the parameter and return stacks on the
chip. Our cachig algorith keeps the top

four stack elements avaiable in cache and

allows the cache to automaticaly overflow

into memory. The stack cachig algorithm
is discussed in detail in section 4.

Finally, Forth's heavy use of subroutine
calls can benefit from architectural support
Good programg pràctice partions a
Forth program into may short simple
words. Prories of running Fort program
are consequently domiated by subroutie
cals as shown by the execution prories of
thee Fort program in Table 1. In the
first two prories, cals and retus are the
most common operation. The thd prorie

of a much smaller progr is domiated by
a single loop and shows few cal and
retus. Call and retu each tae one
cycle to execute in our processor.

The processor has only two intrction

formats (see Figure i) with the most
signficant bit (msb) of a 32 bit intrction
determning the interpretation of the
remaning 3 i bits. If the msb is zero, the
intrction is the address of a subroutie to

calL. Therefore, a list of addresses that

defines a Fort word is alo a program to

execute that word. This approach is used

in may Fort engies includig the HUT
DEP (Balard84) and the Novix famy of
processors (Golden85). The only
diadvantage of this approach is that one
hal of the address space canot be used to

hold program. This is less of a problem in
32 bit processors than in i 6 bit processors.

If the msb of an instrction is one, the
rest of the instrction is microcode that

directly controls the data path of the
processor. The microcode consists of ten
fields that each control a resource in the
data path Almost al of Fort's primtive

stack mapulation and arithetic words
can be imlemented with a single
microcode instruction. The detais of the
microcode instrctions and the data path

are discussed more thoroughy in the next
section.

Both of the instrction tyes described

above are executed whie the next
intrction is being fetched. However,
some Fort primtives, such as cg. and I,
disrupt the instrction prefetch and
consequently requie an extr cycle to fetch
the next instrction. Conditional and
unconditional branches also need two
cycles to execute since the instrction and a

32 bit destiation address must be fetched.

3. Instruction Execution

All of the elements in the processor's

data path are a ful 32 bits wide (see Figure

2). Most of the elements communicate over
the Bbus. A short auxilar Abus is used in

calculatig the address of the next
instrction.

The elements in the data path include
parameter and return stack caches, an ALU,
a one bit shifter, and a temporar Data
Latch (DL). One input to the ALU always

comes from the Bbus while the other input
can come from the top of the parameter
stack (TOS) or from the Abus. The Abus

connection permts the ALU to increment
the program counter at a tie when the
ALU would otherwise be idle. The TOS
connection is used to execute Forth binar
operations such as +. A one bit Flag Latch

(FL) can save a selected ALU condition.
The FL can subsequently be driven onto
the Bbus or be used to control a conditional
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TABLE i. Primtive Execution Frequencies

MC680 1 0 Metacompilation HUT DEP Flight Code 1802 Data Acquisition Code
Primtive Frequencv % Primtive Frequency % Primtive Frequency %

(;) 13.9 (:) 17.3 + 10.9

(:) 13.6 & 10;9 (arays) 10.9

?branch 7.8 (constant) 9.4 I 10.5

dup 7.7 (;) 7.5 (loop) 10.2

& 6.3 wait 5.6 c& 8.1

(constant) 5.6 (literal) 5.5 constant 6.1

(variable) 5.4 ?branch 4.7 - 4.8

(literal) 4.9 r& (I) 4.1 (:) 4.4
branch 3.5 swap 3.8 (;) 4.4
swap 2.4 Uloop) 2.8 & 4.0
and 1.9 -1 2.8 (lltS) 3.5

i 1.9 and 2.7 i 3.2
~ 1.9 i 2.6 dup 3.2
::r 1.8 (varable) 1.8 ?branch 2.1

+ 1.8 not (0-) 1. swap 2.1

cl 1.6 drop 1.8 o~ 2.0
over 1.6 O~ 1.8 J 2.0
c& 1.5 dup 1.7 branch 1.7

1+ 1.3 over 1. and 1.
drop 1.3 or 1.4 (1It16) 1.

1- 1. rotate 1.4 ~ 1.0
cmove 1.0 . 1.0 ::r 1.0
other 10.4 other 6.3 other 1.

msb Action

subroutie calo

Argment

address

control fields user dermed microcode

Figure i~ Instrction Formats

branch. The program counter consists of
the Instruction Address Regiter (fAR) and
thè Address Latch (AL). The data path
also includes an Instrction Register (fR), a

path to the external address/data bus (Port),
the processor status word (PSW, and four
global User Defined Registers (UDRs).

The microcode instructions execute in
two steps. In the first step operads are
transferred to the ALU, a result is
temporarily saved in DL, and a F L
condition is latched. The results are
forwarded to a destination register during

the second step. Tables 2. and 3 describe

the micro code fields that control the
operations.

The interpretation of the fields in
Tables 2 and 3 is straightforward except for

· It la inin to compare thil table with the
equivalent tale frm the rirt verlon of the
proUlr (Fr86). In the HCond verion,
iome ID chan. wer made to the S1. Giii,
an Ff fielcl to be"er IUpporl muUi-precillon
arthmetic.
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Figure 2. Data Path Block Diagram

the Stackop and Post/etch fields. The
programmer sees the Stackop operation
occurring 'magically'. between step one and
step two. Thus, an instruction that accesses

!he top o~ the parameter stack in both steps
is referrng to two different physical
registers if the instruction also pops or
pushes the stack.

The one bit Post/etch field is set when
an extra instruction fetch cycle is necessary
because a memory load or store operation
prevented the normal instruction prefetch.
The postfetch cycle is also used to
implement conditional branches. In a
postfetch cycle the value in FL determines
the address of the next instruction. If the
FL is set, the program counter has the

address of the next instruction and if the
FL is cleared, the IR has the address. A
conditonal branch consists of a microcode
instruction that performs a test
conditionally sets the F L and specifies ~
postfetch. cycle. During execution of the
microcode instruction, a 32 bit destination
address is fetched from the instruction
stream into the IR as if it were an
instruction. The postfetch cycle. wil either
branch to the location held in the I R or
continue based on the value of FL. Load
and store instructions which also require a
postfetch cycle must arrange to set FL and

unconditional branches must clear F L.

The basic two step microcode
instruction can be summarized in the
register transfer notation shown at the top
of Table 4 where step one is on the left and
step two is on the right. Table 4 also shows
how some representative Forth primitives
are implemented. The stack operations that
push the parameter stack or pop the
parameter stack are denoted by ¡p and fP
respectively. The last entry in the table

shows how multiple Forth primitives can be
packed. into one microcode instruction
(Hayes86).

4. Stack Caching

An overflow /underflow mechanism
allows a stack to grow larger than the space
available in the on-chip memory. The
method is similar to an algorithm analyzed
by Hasegawa and Shigei (Hasegawa85)
which they call Cut-Back-K. When the on-
chip memory is full and a. stack push
occurs, the bottom K words of the on-chip
memory are written out to main memory. If
the on-chip memory is empty and a stack
pop occurS, K words are read in from main
me~ory. This algorithm is not directly
applicable to our architecture for two
reasons. First, our instruction encoding
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TABLE 2. Step One Instruction Fields

Field Action Size
Bbus source register of Bbus 4

TOS, SOS, 30S, 40S
TOR, SOR, 30R,40R
JAR, PSW, UDRO. UDR1, UDR2, UDR3

Shift select shifter operation i
arithmetic shift right
none

A LUop ALU operation 8

Cin carry input 2

0, i, FL, -iFL
Flag Flag condition 4

0, Z, N, C, V, NxorV, --C+Z, (NxorV)+Z, 1,
-iZ, -iN, --C, Nop, --(NxorV), -i(-iC+Z),
-i((NxorV)+Z)

Xfer bus transfer 2
Abus-+ ALIPORT,read

.
Bbus-+PORT,read
Bbus-+ALIPORT,read
Bbus-+PORT,write

Stackop stack. operation 3

push parameter stack
pop parameter stack
push return stack
pop return stack
pop both stacks
push parameter stack, pop return stack
pop parameter stack, push return stack
nop

Total stép one bits allocated 24

allows access to the top four stack elements,

so tlieseelements must always be available
in the cache. Second, Our implementation
of the algorithm uses high priority
interrupts to handle stack overflow and
underflow, so at least one stack location

must be available for use by the interrupt
service routine. However, merely by
pretending that there are five less locations

available in on-chip memory allows us to
apply Hasegawa's analysis.

Each stack cache in the current
implementations of the architecture consists
of sixteen 32 bit words. The choice of
sixteen words was dictated almost solely by
available chip area. The stack cache can be

modeled as an eleven state Markov chain.
A pop wil cause the system to follow the
left arrow (see Figure 3) from its current
state to its new state. Similarly, a push will
cause a transition to the right. If neither a
push nor a pop occurs, the state remains
unchanged. There are eleven states in the
model because that is the maximum
excursion that the top of stack can make

within the cache without causing an
overflow or underflow. When the cache is
in state eleven and a push occurs, the cache
overflows and K cached stack words are
written to main memory. In Figure 3, K=8,

and state four is entered following an

overflow. If eight more pushes occur, the
cache wil overflow again.
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TABLE 3. Step Two Instruction Fields

Field Action Size
Bsrc Bbus source register 2

DL, FL, PORT, TOS
Bdest Bbus destination register 4

TOS, SOS, 30S, 40S
TOR, SOR, 30R, 40R
P8W PORT, UDRO, UDR)
UDR2, UDR3, none

Postfetch execute post-fetch cycle 1

Total step two bits allocated 7

Instruction Word Size 31

TABLE 4. User Defined Microcode for Some Typical Forth Primitives

Primitive Action, step one Action, step two

Generic Actions source op TOS _ DL¡ cc _ FL¡ stackop sourèe _ dest

dup TOS _ DL¡ lP DL _ TOS
over sos _ DLj lP DL _ TOS
;:r TOS _ DL¡tPj lR DL _ TOR
r;: TOR _ DL¡ tR¡ lP DL _ TOS
1+ TOS +l-.DL DL _ ToS
0= TOS _ DL¡ Z _ FL . FL _ TOS
+ sos + TOS _ DL¡ tP DL _ TOS

. .. sos - TOS _ DL¡ NxorV .. FL¡ tP FL _ TOS

(j), exit TOS _ AL IPORT, read¡ tP

(J TOS _ PORT,read¡ 1_ FL PORT_ TOSj postfetch
! TOS _ PORT,write¡ 1.. FLj tP TOS _ PORT¡ postfetch

?branch TOS _ DL¡ Z_ FL¡ tP postfetch
. ..target address;:

over 0.. if sos _ DL¡ N _ FL post fetch 

..target address;: .

Hasegawaand Shigei's analysis of the
Cut-Back-K algorithm assumes that the top
of the stack does a random walk, i.e., that
the probabilties ofa push or a pop in a
given instruction are independent of what
happened in the previous instruction. The
probability of push is also assumed to be
equal to the probabilty of a pop. The
analysis found that the expected duration of

the random walk the top the stack makes

before an overflow or underflow occurs is:

DK = K ~N_-rK) (1)
where

K is the cut back value
N is the number of states + 1
r is the prObability that an

instruction neither pushes
nor pops

DK is maximized by setting .K to N/2
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Figure 3. Cut-Back-K Algorithm: K=8

yielding:

Dma = ~ (2)
With a cache .of sixteen words and the top
fo~ stack elements always in the cache, the
optial K is 6. The state diagram in Figure

4 represents th variation of the algorith

This figure and the previous equation bear

out the intutively appealng notion that

intervals between falling off the end of the
diagram are maximized by starng at the
center of the diagram Our current chip
design uses the K=8 version of Figure 3
instead of the optial algorith because an

extremely simple VLSI implementation was
found for K=8 (Fraeman86).

In practice, the average depth of a Fort
stack varies slowly whie the actual depth
experiences small, rapid variations. The
slow variation contributes little toa
program's stack cachig overhead.
However, if the amplitude of the rapid
oscilations is suffciently large, the stack

underfow / overflow mechansm wil cause
thrashing between the cache and ma
memory. Oscilations that are greater than
thee quarters of the on-chip cache size wil

always produce this thashig. Also, with

K=8, oscilations with amlitudes down to
one quarer of the on-chip cache size can

produce thashing if .the initial stack depth
is at an inopportne value.

An experiment was done to charcterize
the stack depth behavior of a tyical Fort

program. The iner interpreter of a
conventional Fort system was modied to
record the current stack depth for each

primitive. executed. A trace of the stack

depths from the first 1,000,000 primitives

executed in the metacompilation benchmark
(Table 1) was fed to a simulation of the
caching algorith The simulation was
parameterized in the size of the cache, the
number of items intialy on the stack, and
the Cut-Back-K value. In addition to
caches of size 16, 32 word caches were also
simulated. Equation 2 above indicates that
the length of the random walk is
proportonal to the square of the number of
states in the model, so doubling the size of
the cache should reduce the number of
stack interrpts by at least a factor of four.
For cache sizes of 16, eight diferent runs
w.ere performed with each run having adifferent number of items initially on the
stack rangig from 16 to 24. This allowed

observation of the worst and best case

performance of the algorithm. For caches

with 32 words, sixteen runs were done.

The results are summarized in Table 5.
With an on-chip cache size of 16, the worst
case performance of the stacks is quite
poor, while the best case performance is

very good. Doubling the on-chip stack size
to 32 reduces the worst case behavior
draticaly. This data indicates that stack
sizes of 16 are often suffcient but that sizes
of 32 are preferable. This single
experiment is not conclusive and the
performance of the cache running real code

· A prilve la any code word defied in the
i) ra from du to the dictiona look up
wor (fid).
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Figure 4. Cut-Back-K Algorithm: K=6 (Optimal)

remas to be seen.

5. A Forth Interpreter for a Forth Chip

A Fort incremental compiler and
interpreter have been written for our
processor (Hayes86). Surprisingly, an
interpreter for a conventional
microprocessor needed' only slight
modication to work on our chip. An
unusual dictionary structure was added to
support the direct execution features of the
processor.

Most conventional Forth systems use
either direct or indirect threaded code.

When a primitive such as dup is used in a
colon def'inition, the primtive is referenced
either via one level of indirection (direct
threaded code, see Figure 5) or two levels
of indirection (indirect theaded code).

With direct execution the actual object code
for the primtive is used in the colon
def'intion (see Figure 6). To accommodate
th inline code expansion each dictionary

entry has a code length field. This field
specifies the number of words in the code
field that should be copied when expanding
the def'inition inline. Non-inline words wil
have a code length of zero.

By default most words are not brought

in line. Most def'ining words set the code

length to zero when the dictionary header

is created. However, if a def'intion is
followed by the word ¡nUne:

: 2dup over over i IDUne

that definition wil always be expanded
iiiline. InUne works by computig the
length of the most recently defined word

(less one for exit) and storing the result in
its code length field. Currently, the

def'ing words c:onstant and variable
always create inlie words for effciency.
Consequently, constants and variables
behave exactly lie literals.

6. Results

Two versions of our p,rocessor have
been built. A prototype chip was
implemented in 411m Silcon on Sapphire

(SOS) CMOS. SOS was chosen because of
its radiation tolerance in space
environments (Wiliam86J. Fully static
design principles were followed so that the
chip could be used reliably as a component
in a spacecraft.

When the prototype chips were received,
we discovered that a design rule violation
had disastrously afected yield. However,

enough paraly functional chips were
found to verify the correctness of the

design. One chip worked well enough,
albeit at a low clock rate, to run an
interactive Forth interpreter and
incremental compiler.

Following ths mixed success, we have
reimplemented the architecture in 'bulk
CMOS. The architecture was enhanced
slightly to better support multi-precision

arithmetic. Although the architecture
remaied fundamentaly the same, the
differences between SOS and bulk CMOS
dictated an entire redesign at the circuit
leveL. The bulk CMOS design was initially
fabricated with 311ni feature sizes.
However, since we used scalable design
rules, we wil be able to fabricate the design
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TABLE 5, Stack Interrpt Behavior

Stack Interrpts

per 1,000,000 Primtives Executed

Algorith Parameter Stack Return Stack

Best Worst Best Worst

size- 1 6, K-8 6 28366 1019 4949
size- 1 6, K..6 2 4831 751 2236
size..32, K-16 0 1 0 315
size-32, K-14 0 1 0 4

: foo 'N dup ..

Figure 5, Direct Threaded Use of Primtive

: foo 'N dup N'

~ .dup COde):= .exil coe,1

Figure 6, Direct Execution of Primitive

with 1.21,m features in the future yielding a

2-4 improvement in performance. We
expect to receive 31'ID chips in June of

1987.
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