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ABSTRACT

We have developed a simple direct execution architecture for a 32 bit Forth microprocessor.
The processor has two instruction types: subroutine call and user defined microcode. The
processor’s data path was designed so that most Forth primitives can be represented with one
microcode instruction that executes in a single cycle. The processor uses a single large,
uniform address space (231 words) for program, data, and stack storage. The top portions of
theé parameter and return stacks are cached in the microprocessor to improve performance
while retaining a single data path between memory and the CPU. A Forth outer interpreter

that supports inline code expansion was written.

1. Introduction

This paper describes the architecture of
a 32 bit microprocessor designed for the
direct execution of Forth programs. Two
versions of this architecture have been
implemented: a prototype built with 4um
Silicon on Sapphire (SOS) and a complete
version built with 3ym bulk CMOS. The
processor has a large uniform address space
and operates on 32 bit quantities. It also
has good program execution performance
because most Forth primitive operations are
executed in one cycle. This single cycle
execution and the small number of
instruction formats makes this architecture
‘another example of a Reduced Instruction
Set Computer (RISC) [Patterson85].

For many years our group has used
Forth to program embedded computers,
especially for spacecraft. We recently built
a bit-slice board level Forth processor
[Ballard84] for wuse in the Hopkins
Ultraviolet Telescope (HUT) which was to
have flown on the Space Shuttle in March,
1986 (rescheduled to January, 1989). The
project described in this paper was
undertaken to show that a systems design
group could cost effectively develop and
use custom VLSI circuits to enhance system
capabilities, A single chip Forth processor
could replace the 72 in2 circuit board used
for the HUT processor and increase
performance by a factor of 5-10 while

operating on 32 bit rather than 16 bit
numbers, Because of lack of time and
budget and because most of the embedded
systems we have built are not available for
study®, no rigorous program based
architecture’ studies were performed.
Consequently, many of our architectural
decisions were based on  simple
experiments, experience, and intuition.

This paper is a summary of our work (so
far) on Forth processor architectures. More
detailed treatment of the topics discussed in
this paper can be found in [Fraeman86),
[Hayes86], and [Williams86}. The paper
begins by identifying three features of
Forth that benefit from hardware support
and defining an instruction set to provide
this support. Next, our processor’s data
path and how it implements Forth’s
primitives is described. The following
section discusses the on-chip stack caches.
Section 5 briefly describes some special
features of the Forth outer interpreter
needed to support a direct execution
machine. Finally, some results from both
implementations of the architecture are
described.

* It is difficult to profile a program written for a

. satellite after the satellite has been launched into a
600 mile polar orbit.
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2. Instruction Set Architecture

Three aspects of Forth can benefit from
architectural support. The first is Forth’s
inner interpreter. In Forth implementations
on traditional processors, the inner
interpreter emulates the fetch-execute cycle
of an abstract Forth machine. This
overhead typically uses 35%-50% of the
CPU time. Our processor architecture
allows most Forth primitives to execute in
one instruction and the inner interpreter

simply becomes the fetch-execute cycle of

the processor.

The second feature of Forth that can
take advantage of architectural support is
Forth’s two stack programming model
Most Forth primitives take operands from
one or both stacks, increment or decrement
stack pointers, and return a result to one of
the stacks. To achieve our goal of
executing -one Forth primitive per cycle,
these stack accesses must also occur in one
cycle. Our solution is to cache the tops of
the parameter and return stacks on the
chip. Our caching algorithm keeps the top
four stack elements available in cache and
allows the cache to automatically overflow
into memory. The stack caching algorithm
is discussed in detail in section 4,

Finally, Forth’s heavy use of subroutine
calls can benefit from architectural support.
Good programming practice partitions a
Forth program into many short, simple
words, Profiles of running Forth programs
are consequently dominated by subroutine
calls as shown by the execution profiles of
three Forth programs in Table 1. In the
first two profiles, calls and returns are the
most common operation. The third profile
of a much smaller program is dominated by
a single loop and shows few calls and
returns., Call and return each take one
cycle to execute in our processor.

The processor has only two instruction
formats (see Figure 1) with the most
significant bit (msb) of a 32 bit instruction
determining the interpretation of the
remaining 31 bits. If the msb is zero, the
instruction is the address of a subroutine to
call. Therefore, a list of addresses that
defines a Forth word is also a program to
execute that word. This approach is used

in many Forth engines including the HUT
DEP [Ballard84] and the Novix family of
processors [Golden85]. The only
disadvantage of this approach is that one
half of the address space cannot be used to
hold programs. This is less of a problem in
32 bit processors than in 16 bit processors.

If the msb of an instruction is one, the
rest of the instruction is microcode that
directly controls the data path of the
processor. The microcode consists of ten
fields that each control a resource in the
data path. Almost all of Forth’s primitive
stack manipulation and arithmetic -words
can be implemented with a single
microcode instruction. The details of the
microcode instructions and the data path
arc discussed more thoroughly in the next
section.

Both of the instruction types described
above are executed while- the next
instruction. is being fetched. However,
some Forth primitives, such as @ and !,
disrupt - the instruction prefetch and
consequently require an extra cycle to fetch
the next instruction. Conditional and
unconditional branches also need two
cycles to execute since the instruction and a
32 bit destination address must be fetched.

3. Instruction Execution

All of the ¢lements in the processor’s
data path are a full 32 bits wide (see Figure
2). Most of the elements communicate over
the Bbus. A short auxiliary 4bus is used in
calculating the address of the next
instruction,

The clements in the data path include
parameter and return stack caches, an ALU,
a one bit shifter, and a temporary Data
Latch (DL). One input to the ALU always
comes from the Bbus while the other input
can come from the top of the parameter
stack (TOS) or from the Abus. The Abus
connection permits the ALU to increment
the program counter at a time when the
ALU would otherwise be idle. The 70S
connection is used to exccute Forth binary
operations such as +. A one bit Flag Latch
(FL) can save a selected ALU condition,
The FL can subsequently be driven onto
the Bbus or be used to control a conditional
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TABLE 1. Primitive Execution Frequencies

MC68010 Metacompilation HUT DEP Flight Code 1802 Data Acquisition Code
Primitive  Frequency % | Primitive Frequency % | Primitive Frequency %
[6) 13.9 0] 17.3 + 109
¢) 13.6 @ 109 (arrays) 10.9
?branch 7.8 (constant) 9.4 i 10.5
dup 1.7 §) 1.5 (loop) 102
@ 6.3 wait 5.6 c@ 8.1
(constant) 56 (literal) 55 constant 6.1
(variable) 54 ?branch 4.7 - . 48
(literal) 4.9 r@ (1) 4.1 ¢) 44
branch 35 swap 38 G) 4.4
swap 24 (/loop) 2.8 @ 40
and 1.9 -1 2.8 (lit8) - 3.5
! 19 and 2.7 ! 3.2
r 1.9 1 2.6 dup 32
>r : 1.8 (variable) 18 branch 2.1
+ 1.8 not (0=) 1.8 swap 2.1
¢! 1.6 drop 1.8 0< 20
over 1.6 0< 1.8 j 20
@ 1.5 dup 1.7 branch 1.7
1+ 13 over 1.5 and 1.1
drop 1.3 or 14 (lit16) 1.1
1- 1.1 rotate 14 r 1.0
cmove 1.0 = 1.0 >r 1.0
other 104 other 6.3 other 1.5
msh Argument Action

0 address

1 control fields

" subroutine call

user defined microcode

Figure 1, Instruction Formats

branch. The program counter consists of
the Instruction Address Register (/4R) and
the Address Latch (4AL). The data path
also includes an Instruction Register (R), a
path to the external address/data bus (Port),
the processor status word (PSW), and four
global User Defined Registers (UDRs).

The microcode instructions execute in
two steps. In the first step operands are
transferred to the ALU, a result is
temporarily saved in DL, and a FL
condition is latched. The results are
forwarded to a destination register during

the second step. Tables 2* and 3 describe
the microcode fields that control the
operations.

The interpretation of the fields in
Tables 2 and 3 is straightforward except for

* It is interesting to compare this table with the

equivalent table from the first version of the
processor [Fraeman86]. In the second  version,
some small changes were made to the Sh{t, Oin,
and Flag fields to better support multi-precision
arithmetic,
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Figure 2. Data Path Block Diagram

the Stackop and Postfetch fields. The
programmer sees the Stackop operation
occurring ‘magically’ between step one and
step two. Thus, an instruction that accesses
the top of the parameter stack in both steps
is referring to two different physical
registers "if ‘the instruction also pops or
pushes the stack.

The one bit Postfetch field is set when
an extra instruction fetch cycle is necessary
because a memory load or store operation
prevented the normal instruction prefetch.
The postfetch cycle is. also used - to
implement conditional branches. In a
postfetch cycle the value in FL determines
the address of the next instruction. If the
FL is set, the program counter has the
address of the next instruction and if the
FL is cleared, the IR has the address.” A
conditional branch consists of a microcode
instruction  that performs a  test,
conditionally sets the FL and specifies a
postfetch cycle. During execution of the
microcode instruction, a 32 bit destination
address is fetched from the instruction
stream into the IR as if it were an
instruction. The postfetch cycle will either
branch to the location held in the IR or
continue based on the value of FL. Load
and store instructions which also require a
postfetch cycle must arrange to set FL and

unconditional branches must clear FL.

- The basic two step microcode
instruction can be summarized in the
register transfer notation shown at the top
of Table 4 where step one is on the. left and
step two is on the right. Table 4 also shows
how some representative Forth primitives
are implemented. The stack operations that
push the  parameter stack or pop the
parameter stack are denoted by [P and tP
respectively. The last entry in the table
shows how multiple Forth primitives can be
packed into one microcode instruction
[Hayes86].

4. Stack Caching

An  overflow/underflow = mechanism
allows a stack to grow larger than the space
available in the on-chip memory. = The
method is similar to an algorithm analyzed
by Hasegawa and Shigei [Hasegawa85)
which they call Cut-Back-K. When the on-
chip memory is full and a: stack push
occurs, the bottom XK words of the on-chip
memory are written out to main memory. If
the on-chip memory is empty and a stack
pop occurs, X words are read in from main
memory. This algorithm is not directly
applicable to our architecture for two
reasons. First, our instruction encoding
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TABLE 2. Step One Instruction Fields

Field

Action

Size

Bbus

source register of Bbus

TOS, SOS, 308, 40S

TOR, SOR, 30R, 40R

IAR, PSW, UDRO, UDRI, UDR2, UDR3

Shift

select shifter operation
arithmetic shift right
none

ALUop

ALU obcration

Cin

carry input
0, 1, FL, =FL

Flag

Flag condition
0.Z N, C,V, NxorV, -C+Z, (NxorV)+Z, 1,
-Z, =N, =C, Nop, —~(NxorV), —(-~C+Z),
—((NxorV)+Z)

Xfer

bus transfer

Abus— AL|PORT read
Bbus—PORT,read
Bbus— ALIPORT read
Bbus— PORT ,write

Stackop

stack operation

push parameter stack

pop parameter stack

push return stack

pop return stack

pop both stacks

push parameter stack, pop return stack
pop parameter stack, push return stack
nop

Total stép one bits allocated

24

allows access to the top four stack elements,
so these elements must always be available
in the cache. Second, our implementation
of ‘the - algorithm ~uses high priority
interrupts to handle stack overflow and
underflow, so at least one stack location
must -be available. for use by the interrupt
service routine. . However, merely - by
pretending that there are five less locations
available in on-chip memory allows us to
apply Hasegawa’s analysis.

Each ~stack cache in the current
implementations of the architecture consists
of sixteen 32 bit words. The choice of
sixteen words was dictated ‘almost solely by
available chip area. The stack cache can be

modeled as an eleven state Markov chain.
A pop will cause the system to follow the
left arrow (see Figure 3) from its current
state to its new state. Similarly, a push will
cause a transition to the right. If neither a
push nor a pop occurs, the state remains

unchanged. There are eleven states in the

model because that is the maximum
excursion that the top of stack can make
within the cache without causing an
overflow or underflow. When the cache is
in state eleven and a push occurs, the cache
overflows and K cached stack words are
written to main memory. In Figure 3, K=8,
and state four is entered following an
overflow. If eight more pushes occur, the
cache will overflow again.
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TABLE 3. Step Two Instruction Fields

Field Action Size
Bsrc Bbus source register 2
DL, FL, PORT, TOS _
Bdest Bbus destination register 4
TOS, SOS, 308, 408
TOR, SOR, 30R, 40OR
PSW, PORT, UDRO, UDR1
“UDR2, UDR3, none
Postfetch | execute post-fetch cycle 1
Total step two bits allocated 7
Instruction Word Size 31

TABLE 4. User Defined Microcode for Some Typical Forth Primitives

Primitive Action, step one Action, step two
Generic Actions source op TOS -+ DL; cc — FL; stackop source — dest
dup TOS — DL; |P DL — TOS
over 808 — DL; |P DL -» TOS
>r TOS — DL; 1P;|R _ DL — TOR
r> TOR — DL; 1R; |P DL - TOS
1+ TOS +1 - DL DL — TOS
- 0= TOS — DL; Z — FL FL — TOS
+ SOS + TOS ~+ DL; 1P DL — TOS
< SOS - TOS — DL; NxorV - FL; {P FL — TOS
(), exit TOS — AL |PORT, read; 1P v ‘
@ TOS — PORT read; 1 — FL PORT — TOS; postfetch
1 TOS — PORT,write; 1 — FL; 1P TOS — PORT; postfetch
branch TOS — DL; Z — FL; tP postfetch
ST <target address> . _
over O< if SOS — DL; N — FL postfetch
<target address>

Hasegawa and Shigei’s analysis of the
Cut-Back-K algorithm assumes that the top
of the stack does a random walk, ie., that
the probabilities of a push or a pop in a
given instruction are independent of what
‘happened in the previous instruction. The
probability of push is also assumed to be
equal to the. probability of a pop. The
analysis found that the expected duration of
the random walk the top the stack makes

before an overflow or underflow occurs is:

Dk = K({N-K) ' (D
where '
K is the cut back value
N is the number of states + I
r is the probability that an
instruction neither pushes
nor pops

bx is maximized by setting X to N/2
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Figure 3. Cut-Back-K Algorithm: K=8

yielding;

Dmax = y}izsy )

With a cache of sixteen words and the top
four stack elements always in the cache, the
optimal K is 6. The state diagram in Figure
4 represents this variation of the algorithm.
This figure and the previous equation bear
out the intuitively appealing notion that
intervals between falling off the end of the
diagram are maximized by starting at the
center of the diagram,  Our current chip
design uses the K=8 version of Figure 3
instead of the optimal algorithm because an
extremely simple VLSI implementation was
found for K=8 [Fraecman86).

In practice, the average depth of a Forth
stack varies slowly while the actual depth
experiences small, rapid variations. The
slow variation contributes little to a
program’s  stack  caching  overhead.
However, if the amplitude of the rapid
oscillations is sufficiently large, the stack
underflow/overflow mechanism will cause
thrashing between the cache and main
memory. Oscillations that are greater than
three quarters of the on-chip cache size will
always produce this thrashing. Also, with
K=8, oscillations with amplitudes down to
one quarter of the on-chip cache size can
produce thrashing if-the initial stack depth
is at an inopportune value.

An experiment was done to characterize
the stack depth behavior of a typical Forth
program. - The inner interpreter of a
conventional Forth system was modified to
record the current stack depth for each
primitive® executed. A trace of the stack

depths from the first 1,000,000 primitives
executed in the metacompilation benchmark
(Table 1) was fed to a simulation of the
caching algorithm. The simulation was
parameterized in the size of the cache, the
number of items initially on the stack, and
the Cut-Back-K value. In addition to
caches of size 16, 32 word caches were also
simulated. Equation 2 above indicates that
the length of the random walk |is
proportional to the square of the number of
states in the model, so doubling the size of
the cache should reduce the number of
stack interrupts by at least a factor of four.
For cache sizes of 16, eight different runs
were performed with each run having a
different number of items initially on the
stack ranging from 16 to 24. This allowed
observation of the worst and best case
performance of the algorithm, For caches
with 32 words, sixteen runs were done.

The results are summarized in Table 5.
With an on-chip cache size of 16, the worst
case performance of the stacks is quite
poor, while the best case performance is
very good. Doubling the on-chip stack size
to 32 reduces the worst case behavior
dramatically. This data indicates that stack
sizes of 16 are often sufficient but that sizes
of 32 are opreferable, This single
experiment is not conclusive and the
performance of the cache running real code

* A primitive is any code word defined in the
system ranging from dup to the dictionary look up
word (find).
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Figure 4. Cut-Back-K Algorithm: K=6’(Optima‘l')

remains to be seen.

3. A Forth Interpreter for a Forth Chip

A Forth incremental compiler and
interpreter have been written for our

processor [Hayes86).  Surprisingly, an
interpreter for a conventional
microprocessor needed  only slight

modification to work on our chip. An
unusual dictionary structure was added to
support the direct execution features of the
processor.

Most conventional Forth systems use
either direct or indirect threaded code.
When a primitive such as dup is used in a
colon definition, the primitive is referenced
either via one level of indirection (direct
threaded code, see Figure 5) or two levels
of indirection (indirect threaded code).
With direct execution the actual object code
for the primitive is used in the colon
definition (see Figure 6). To accommodate
this inline code expansion each dictionary
entry has a code length field. This field
specifies the number of words in the code
field that should be copied when expanding
the definition inline. Non-inline words will
have a code length of zero.

By default most words are not brought
inline, Most defining words set the code
length to zero when the dictionary header
is created. However, if a definition is
followed by the word inline:

: 2dup over over ; inline

that definition will always be expanded
inline. Inline works by computing the
length of the most recently defined word

(less one for exit) and storing the result in
its code length field. Currently, the
defining words constant and variable
always create inline words for efficiency.
Consequently, constants and variables
behave exactly like literals.

6. Results

Two ~versions of our processor have
been  built. A prototype chip was
implemented in 4um Silicon on Sapphire
(SOS) CMOS. SOS was chosen because of
its  radiation  tolerance in  space
environments [Williams86]. Fully . static
design principles were followed so that the
chip could be used reliably as a component
in a spacecraft.

When the prototype chips were received,
we discovered that a design rule violation
had disastrously affected yield. However,
enough partially functional chips were
found to wverify the correctness of the
design. One chip worked well enough,
albeit at a low clock rate, to run an
interactive Forth interpreter and
incremental compiler.

Following this mixed success, we have
reimplemented the architecture in bulk
CMOS. The architecture was enhanced
slightly to better support multi-precision
arithmetic. ~ Although the architecture
remained fundamentally the same, the
differences between SOS and bulk CMOS
dictated an entire redesign at the circuit
level. The bulk CMOS design was initially
fabricated  with 3um feature sizes.
However, since we used scalable design
rules, we will be able to fabricate the design
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TABLE 5. Stack Interrupt Behavior

Stack Interrupts
per 1,000,000 Primitives Executed

. Parameter Stack || Return Stack
Algorithm Best Worst Best | Worst
size=16, K=8 6 28366 1019 | 4949
size=16, K=6 2 4831 751 | 2236
size=32, K=16 0 1 0 315
size=32, K=14 0 1 0 4

:foo .. dup .. ;
‘—|
foo] & |, | ®

<+
Iﬁpl ¢ l <dup codej

exitl * |<exit code>]

Figure 5. Direct Threaded Use of Primitive

:foo .. dup ..

4——-|

m—p

..| <dup code

. | <exit code>

Figure 6. Direct Execution of Primitive

with 1.2um features in the future yielding a
2-4 improvement in performance. We
expect to receive 3um chips in June of
1987.
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