
Proceedings of the 1987 Rochester Forth Conference 225

Six RePT Verbs and the Macintosh
Israel Urieli

Ohio University
Athens OHIO 45701

Abstrct:
The Apple Macintosh computer intruced some revolutionar concepts into the personal

computer world, one of them being that pointing with a mouse is more intuitive than typing on
a keyboard. Significant applications have been developed in which the user need not type on
the keyboard at alL. Applications are typically developed in terms of an 'event loop', in which
the varous basic events (such as pressing the mouse button) are continuously polled and

resolved.
The token theaded infrastrcture of RePTL is uniquely suited to this environment. The

operating system is a self contaied kernel and is comprised of the Outer and Inner interpreters
(a total of six verbs, 78 bytes of 68000 code) and the Return stack. Thus the input of a
keyboard character, and hence the development of the entire RePTIL language can be
considered as an application shell on top of this fundamenta kerneL.

This paper describes the implementation of the RePTIL operating system kernel on the
Macintosh computer. An application example of its use is presented in the context of a typical
mouse drven application - Conway's Game of Life.

Fort-like systems have a number of features in common. The most fundamental of them
is the concept of the inner interpreter - the virtual 'hear' of the computer, and the outer
interpreter with its related return stack tying the whole system together. Unfortunately these
two elements are usually embedded within the entiety of the language and it is diffcult to
isolate them as an operating system entity which can be used in its own right. Since they are
hidden in the language they loose their identity and the emphasis shifts to reading in, parsing
and resolving a line of keyboard characters. The keyboard is the trditional input device for
interactive computing and both machine and language have been adapted around that concept.
We have bred a community which seems to have genetically accepted 'Alternate-Shift-Delete'
as a natural standard.

The Apple Macintosh introduced the mouse, shocking us into the realization that there are
viable alternatives for interactig with the machine. Languages which could effectively develop
applications on the Macintosh were slow in coming, and significantly MacFORTH was the first
high level development language which could be adapted to this unique concept. The basic
approach to application development is the 'event loop'. Typical events are the null event,
depressing the mouse button, releasing the mouse button, depressing a keyboard key, releasing
a keyboard key, inserting a disk, interaction with external devices (I/O drver), and so on.
Programming an application is typically done by progrming a mini operating system within
the language, in which there is an infinite 'event loop' to successively poll and resolve the
varous events.

The token threaded infrastrcture of RePTIL (1) is uniquely suited to this environment in
which the event loop is mappe onto the outer interpreter of the system. The outer interpreter is
at the highest level of the system and is always coded as a threaded secondar. Consider the
outer interpreter of RePT together with the symbolic tokens of the compiled verb as follows:

:End

Run: (Status Word)
Loop (%

DoProgram
DoEvent

i EndLoop%
-8 \ branch offset

Return

'Run Do:
LOOp (

DoProgram
DoEvent

i EndLoop

Thus we see that the outer interpreter is an infinite loop in which the two verbs DoProgram

226 The Journal of Forth Application and Research Volume 5 Number 1

and DoEvent are invoked successively. The verb DoProgram refers to the execution of one
complete step of the internal background program, and the verb DoEvent refers to getting and
resolving a single external event. To make the discussion more meaningful we have chosen a
typical mouse drven application, being Conway's Game of Life (2). Effectively the game
involves setting up colonies of cells in a rectangular Universe, and watching them evolve from
generation to generation in accordance with defined genetic rules. A snapshot of a typical
Glider Gun life form is shown in the following figure:

á File
D Glider Gun

Display

.nu.0..
~

.....

.... .

0....

....
.....

Thus in the context of this example, the verb DoProgram refers to executing the next
generation of the universe and updating the display. The verb DoEvent refers to the user
interaction in setting up, modifying or saving life forms, as well as single stepping to the next
generation, or simply allowing life to evolve. All of the user interaction is done exclusively
with the mouse, either though the menu bar or diectly on the universe.

Ones initial reaction may be to reject this format of the outer interpreter as being too
specific. User intensive applications such as word proessing or spreadsheet applications, for
example, do not require a backgrund progr. That is the beauty of an extensible language --
simply redefine the verb Run, and presto -- a new operating system made to order. What is
being presented here is a methodology rather than a fixed immutable system -- a fundamental
token threaded kernel which can be used for developing applications, one of which could be
the entie RePT interpreter.

The RePTL kernel consists of the outer interpreter as shown above, the associated retur
stack, and the inner interpreter. The inner interpreter Next is at the lowest level of the system
and is always coded as a headerless pritive. As in many Fort implementations the verb Next
is appended to the verb Return, which is the last verb compiled into every threaded secondar.
Since Next is coded as a primitive, its implementation wil always be host dependent. For a
high level functional descrption of Next, refer Reference 1. The Macintosh implementation is
governed by the rather elaborate memory management scheme which requires all references to
be progr-counter relative.

The verbs Lop(% and)EndLp% are the runtime verbs compiled respectively by Loop(
and)EndLop (1). Lop(% is a noop location to brach to, and in our implementation is coded
as a threaded secondary, just for fun. Every verb begins with a 16 bit status word which
summarizes the varous attrbutes of the verb (3). In our basic system the only information
contained in the status word is whether the verb is a primitive (status word negative) or a

Proceedings of the 1987 Rochester Forth Conference 227

XDEF Next ;Make Next available to DoProgram and DoEvent
XDEF RePTIL iSo that system initialize routine can invoke it
XRF DoProgram ; The background program
XRF DoEvent ;Get and resolve the next event
; ------RePTIL symolic token values ---------------------------------
T Return EQU 0 Return from a threaded callT-Run EQU 2 Run - the Outer Interpreter loop
T DoEvent EQU 4 DoEvent - the user interface
T_DoProgram EQU 6 DoProgram - the background program
T Loop r EQU 8 Loop (% - the runt ime Loop (
T-EndLoop r EQU 10) EndLoop% - the runtime) EndLoop
CodeTable -; all code is relative to CodeTable------------------------

DC Return-CodeTable
DC Run~CodeTable
DC DoEvent-CodeTable
DC DoProgram-CodeTable
DC Loop r-CodeTable
DC EndLoop _r-CodeTable. - - ------ -- - -------- ----------------------------------- ----------- ---.

DS . L $ ioo ; reserve space in Globals area
DS . L 1 ; the start of the Return stack
DC T Run ;the first RePTIL program (to invoke Run)

Setup and Go--=---
LEA RPO (AS) ,A4 ; Initialize R-stack pointer (RP = A4)
LEA RunToken,A3; Run Token address to IP (IP = A3)
BRA Next ; to RePTIL Inner interpreter

Return ; from a threaded call--
DC $8000
MOVE. L (A4) + , A3 ; Pop R- stack to IP

Next ; ----the Inner Interpreter------------------~-------------------
MOVE. W (A3) +, DO. Fetch token from IP, Bump IP
MOVE. W CodeTable (DO) , DO Code-CodeTable to DO
LEA CodeTable (DO) , AO Code Pointer (CP = AO)
TST. W (AO) + Status word sign check, bump CP
BPL Threaded

Primitive
JM

Threaded
MOVE. L A3,- (A4) Save IP (return addr) on R-stackLEA (AO) , A3 Next token addr to IPBRA Next and back again

the Outer Interpreter-------------------------------------- ----
DC $0000 'Run Do:
DC T _Loop _ r Loop (
DC T _DoProgram DoProgram
DC T DoEvent DoEvent
DC T - EndLoop r) EndLoopDC -8 -DC T Return : End

Loop_r ; Loop(% (a nop to branch to)---------------------------------
DC $0000 ; 'Loop(% Do:
DC T Return ; :End

EndLoop r ;) Enctoop% (unconditional branch to Loop (%) ---------------
-DC $8000

ADDA (A3) ,A3
BRA Next

ReturnStack
RPO
RunToken
RePTIL

(AO) Execute primitive code

Run

; increment IP by fOllowing inline value

The RePT operatig system kernel

228 The Journal of Forth Application and Research Volume 5 Number i

threaded secondar.)EndLop% is a priitive which executes an unconditional branch by the
value in the following inline word, which is the relative offset to Lop(%.

The verbs DoProgram and DoEvent are coded extemally as primitives. They are regular
assembly language routines with the exception that they are headed with a status word and
return with a 'BRA Next' rather than the regular 'RTS'. DoProgram does a single Life
generation on the entire 124 by 75 rectangular universe. It accesses two global flags from the
verb DoEvent, being the StepFlag, denoting whether or not we are in the single step mode, and
the GoFlag, denoting whether or not we wish Life to 'Go Fort and Evolute'.

DoEvent is the largest verb of the system. It is embedded in the fie which includes the
system initialization routines including the initialzation of al the relevant Macintosh tools and
resources. Currently the only events that ar processed are the null event, and the pressing of
the mouse button.

The complete RePTIL outer and inner interpreteris shown in 6800 assembly language in
the figure below, and assembles into 78 bytes of machine code. Notice the unique way of
setting up the codetable (sequence of code addresses), and the program-counter relative method
of resolving them in the inner interpreter. This approach is typical of Macintosh assembly
language application progrg. The address register allocation used is as follows:

A 7 ~ SP (Parameter stack pointer)
A6 ~ reserved for futur use as the stack frame for local vanables
A5 ~ GP (Global vanables pointer)
A4 ~ RP (Retur stack pointer)
A3 ~ IP (Interpretive pointer)
AD ~ CP (Code pointer)

Conclusions
The question that comes to mind is: "OK, the Game of Life is kinda cute, but what has been
presented here that is different from the many other application development approaches?"
Whereas most approaches involve creating a mini operating system in thefonn of an infinite
'event loop', it is usually done in tenns of the host language, whether it be C, Pascal, or
whatever. The proposal here is that the mini operating system is the operating system of the
host language -- that language, computer and application be merged into one. What better
project to demonstrate this principle on than developing the RePTIL language itself? At this
stage we intend to first build the RePTIL interpreter into the system by expanding the verb
DoEvent to include keyboard entr as well as convert it to a threaded secondary, adding verbs
as needed. Ths wil enable gradually building the language within the framework of a working
outer and inner interpreter. It is hoped that this new approach wil enable the painless
development of the entie language.

References
1. I Urieli, 'REPTIL - Bridging the Gap between Education and Application', Jnl of Forth
Application and Research, Vo14, No 3, 1987.
2. M Gardner, 'Wheels, Life and Other Mathematical Amusements', W H Freeman & Co,
1983.
3. R Buege, 'Status Threaded Code', Proceedings of the 1984 Rochester Forth Conference,
pp. 103-104.

Macintosh is a trademark of Apple Computer, Inc.
Mac FORTH is a trademark of Creative Solutions, Inc.

