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Abstract

A Forth implementation of an algorithm for locating the maximum of an arbitrary univariate
function using a global search technique is presented. The algorithm is based on a method
suggested by Kushner. The method discussed in this paper will not get stuck on local maxima and
does not depend on the function being well-behaved or easy to calculate or measure. For the case
where the value of the global maximum is known a priori (a not uncommon case) the algorithm
becomes very simple and efficient. Using a discrete test function that has two local maxima with
values very close to the global maximum an experiment was performed in which the location of the
global maximum was shifted to all possible values within a specified fixed range of the independent
variable. The average number of search points needed to locate the global maximum was found
to be 12% of the total number (compared to 50% for an exhaustive search) and the maximum
number of search points needed (worst case) was found to be 25% (compared to 100% for the
exhaustive case).

Introduction

Finding the maximum (or minimum) of a function is an important problem that often occurs
in engineering design. Many optimization algorithms involve local search techniques which can
get stuck on local maxima. Global search techniques strive to find a global maximum in the
presence of other local maxima. Most search techniques evaluate the function at several points;
the location of each new test point depends on the value of the function at the previous test
points. In many situations the evaluation of the function is a very time-consuming process and
in such cases it is important that the maximum be found using a minimum number of test points.
If the value of the maximum is known a priori then the search can be terminated as soon as a test
point gives the maximum value. The global search technique described in this paper is based on
a method suggested by Kushner [1,2] in which the unknown function is modeled as a stochastic
process conditioned on discrete measurements of the function. For a univariate function if the
value of the global maximum is known (or an upper bound can be given), Kushner’s method leads
to a simple, elegant algorithm. The main advantage of the algorithm is that it does not make any
assumptions about the differentiability of the function. The method has been extended to
multi-variable functions by Stuckman [3,4].

Definitions:

Before describing the algorithm, we will define the parameters used. Figure 1 shows an
arbitrary univariate function, g(z) , where z is the independent variable. Each iteration of the
algorithm is performed on an interval [ Zmin , Zmax ]. We assume that the maximum value of the
function is G. Then the other parameters may be defined as:

Journal of Forth Application and Research Volume 5, Number 3

357



358

The Journal of Forth Application and Research Volume 5 Number 3

dmax = G — g(Zmax)
dmin = G — g(Zmin)
During each iteration a point within the interval is selected as a new candidate for the

maximum. This point is called Z.
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Fig. 1 Definition of variables used in the algorithm.

The Algorithm

The algorithm to be described is based on the analysis described in Appendix A. The

algorithm is supplied with the initial test interval [ Zmin , Zmax | and then goes through a series of
iterations until the maximum value has been determined. The algorithm may be described as
follows:

1.

If gzmin) = G Or glzmax) = G then stop.
DO the following steps n times or until a maximum has been found.
Compute the value of Z, as follows:
Z =Zmn+ T

dmin T
(@min + dmax)
and T = Zmax — Zmin as shown in Figure 1.
Ifg(Z) = G thenstop.
Divide the interval into two smaller intervals— [ zmin,Z ] and [Z, Zmax ].

where, T =

(Note that Z becomes the new zmax for the first interval, and the new zmin for the second
interval.)

Compute a parameter Amin for each of the new intervals:
dmind
Amin = mmT max

and add each interval to a segment list; each entry in the list contains 4min, Zmin, Zmax ,
dmin and dmax .
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6. Select the entry with the smallest Amin in the segment list; the new test interval is the
corresponding [ Zmin » Zmax |-
The number of iterations of the algorithm, n, may be specified when invoking the algorithm
or may be preset to some fixed percentage (for example 10%) of the total search space. If a
maximum is not found after n iterations, the result of the algorithm is the closest value to the
maximum that is found.

The Forth Implementation

The Forth implementation of the algorithm described above is fairly straightforward. It
assumes that the function has integer values at all points. This can be extended easily for a
function with real values or the function may be quantized to appropriate integer values.

The main Forth word is find.max which is invoked using the following format:

<Zmin> <Zmax> < #iter> find.max

where zmin , and zmax identify the interval in which a global maximum is sought, and #ifer is the
number of iterations.

A listing of the Forth program is found in Appendix B. The function to be tested must be
defined before the program is loaded. In the listing supplied, the function is defined on Screen
11, while the program occupies Screens 12 through 16. A new function may be defined by
changing the definition of g(z). When defining g(z), the value of the global maximum must also
be specified by initializing the constant G.

The function find.max first evaluates dmin , and dmax by invoking the word d(z). If either
dmin , OF dmax is zero, then the global maximum has been found, maxz is set t0 dmin , OF dmax and
find.max terminates. Otherwise, find.max calls once which performs the computations involved
in one pass of the algorithm. The word once returns with a true flag if a maximum is found. In
the case when a maximum is not found, once returns a new test interval under a false flag.

Each iteration of once computes the value of Z using the word z~. The function is evaluated

at 7 and tested against G. If the maximum is not found, the maximum value found so far, maxg,
is updated.

In computing the value of 7, due to truncation, it is possible that the value of 7 will be zero.
This would result in Z = zmin . This is not desirable for two reasons -— first, the function has
already been evaluated at zmin Without success, and second, it will lead to two new intervals that
are already in the segment list. To avoid this possibility the value of 7 is forced to be at least 1.

If no maximum is found, then the interval is divided into two smaller intervals and the value
of Amin is computed using the word amin. The value of Amin along with the endpoints of the
interval and the values of d at the endpoints are then added to a segment list whose root is the
variable head [5]. The listis maintained in ascending order of Amin by the word putlist; the new
interval to be tested is the one with the smallest Amin value, and will always be at the top of the
list. The word nextseg retrieves the new interval from the top of the segment list. As discussed
in the paragraph above, in some cases 7 is forced to be 1 and the new interval will have a length
of 1. Obviously, such an interval will be non-productive in subsequent tests, and hence the value
of Amin is not computed for this interval and it is not placed in the segment list.

Test Results

The Forth implementation was successfully tested using several different functions. The
function selected as a test case for this paper is one that has local maxima with values very close
to the global maximum. The test function is a sawtooth function defined over an interval [0, 999].
Several trials were performed; for each trial a different sub-interval was selected such that the
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g0 055 254 253 055

84 169 254 340 z »

Fig. 2 Test function defined by look-up table in Screen #11.

position of the global maximum within the sub-interval was different from the previous trial. A
section of the test function is shown in Figure 2. The test function is periodic and so the pattern
is repeated for the entire interval [0, 999]. The function definition is on Screen 11.

A set of trials was conducted in which the length of the sub-interval was fixed but its location
varied by increments of 1 (at both ends). Since the function is fixed, this has the effect of moving
the maximum to a different location each time. For example the first interval chosen was [85, 340],
while the second trial was performed on the interval [86, 341]. Continuing in this way the location
of the maximum shifts from the right end of the interval to the left end. On the average, the global
maximum was found after only 12% of the total search space was tested. This can be compared
to the average of 50% for an exhaustive search. In no case was it necessary to test more than 25%
of the total number of points in order to locate the global maximum. Again, this is far better than
the worst case of 100% for an exhaustive search.

In the listing of the Forth implementation, the above trials are performed by the word testl
on Screen 18, except for the fact that the sub-interval location is incremented by 26 rather than
1. This was done to obtain an output sample that would be suitable to include with this paper.
The result of executing test1 can be seen in Figure 3. Note in this example the average number
of iterations needed to find the global maximum is only 8% of the total search space.

In another series of tests, the number of iterations was fixed at 20% of the search space and
find .max was executed for different intervals. In this case the global maximum was found in 96%
of the trials. In all cases that failed the maximum obtained was close to the global maximum.

ok
testl
Range #iter Max. atz= %
85 -> 340 1 255 340 0
111 -> 366 27 255 340 10
137 > 392 16 255 330 6
163 -> 418 16 255 340 6
189 -> 444 50 255 340 19
215 -> 470 1 255 340 0
241 -> 49 15 255 340 5
267 -> 522 16 255 340 6
293 -> 548 37 255 340 14
319 -> 574 51 255 340 19

Avg. % iterations = 8 ok

Fig. 3 Sample run of testl in Screen #18.
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Cornclusions

This paper has introduced an efficient algorithm for locating the global maximum for the
special case when the value of the global maximum is known a priori. The algorithm does not
make any assumptions about the differentiability of the function and so can be applied to all
functions. After a series of tests of the algorithm it was found that, on the average, the global
maximum is found after only 12% of the search space has been tested. This makes it ideal for
problems that involve functions that are difficult or expensive to compute.
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APPENDIX A: Derivation of T and Amin

In this section we will show how the expressions for 7 and 4min may be derived. To facilitate
the derivation, we define a new variable ¢ = z — zmin (this has the effect of moving the origin
t0 Zmin ), SO that the test interval is now [0, T ] where T = Zmax — Zmin - The function being
optimized is now g(t) .

Kushner [1,2] modeled the unknown function as a Brownian motion process and showed
that if the value of the function is known at the endpoints of an interval, then within the interval,
the expected value of the function varies linearly with its distance from one of the endpoints, and
the variance of the function is quadratic in nature. This is illustrated in Figure 4.

The expected value of the function, and its variance can be expressed as

Expected value: U@ =go+ %(gT — £0) 1
Variance: ot) = Et-%'ii) @)

where  go = g(0),g7 = g(7)
and ¢ is a constant.
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Fig. 4 Illustrating the linear expected value and quadratic variance of the unknown function.

We select the location of the next test point, 7, as the point within the interval at which the
probability that g(r) > G is maximum. Since g(f) is normally distributed, this probability is

P@>®=1-®G%¥ﬂ=l—®ﬁ2) 3)
where @ is the cumulative normal distribution function of g() and
2
A= G—p
g

Using Eq.(1), we can rewrite the quantity (G — u)as
[
G—p=G=go— 5 @Er—g)

= do+ 7 @r - do) @
where do= G — go
and dr= G - gr
The probability in Eq.(3) can be maximized by minimizing the quantity A. Combining Eqgs.(2)
and (4), A4 can be expressed as

T [do + —%(dT— d())]2

A= 5
ct(T-19 ©)
To minimize 4, we set %A;— = 0, and solve for ¢ = 7. This gives
r= dr + do ©)

and the minimum value of 4 is obtained by substituting Eq.(6) in Eq.(5). Thus
4\ dodT dodr

Amin = T = k——T——

The constant k will not affect comparisons of Amin values for different intervals and is hence
not included in computing the value of Amin in the algorithm described.
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Appendix B: Source Listing
Ser # 11 Ser # 31
8 \ Calculate function reh 280ec88 8 \ Global search reh 28Dec88
1 1
2 YARIABLE val Bval t 2 A test function is stored in the table func.table.
3 3
4 : getval val @ 3 + 256 MOD DUP val ! ; 4 getval Produces a saw-tooth like function with 2 local maxima
5 5 for each maximum.
6 CREATE func.table 1888 ALLOT \ function table 6
7 7
8 : fillup ( addr --) \ fill function table 8 fillup Fills the table with 1888 values
9 1608 8 DO getval OVER C! 1+ LOOP DROP ; 9
18 18
11 : g(z) (z--g) \ evaluate function 11 g(z) evaluates the function g from the lookup table
12 func.table + €8 ; 12 { z is the location in the table 8 - 999)
13 13
14 255 CONSTANT 6 \ value of the global maximum 14 G is the maxisum value of the function.
15 15
Ser § 12 Ser § 32
2 \ Global search - List functions reh 125ep88 8 \ Global search v f2reh 11Sep88
1 1
2 YARIABLE head 2 Head points to first node in list.
3 VARIABLE mark.dp 3 Each node contains 14 bytes,
4 4 | ptr. to next node| amin HI | amin L0 | zmin | zsax |
5 :node { -- node) \ create new node 5 | dmin | dwax | .
6 HERE 14 ALLOT ; [
7 7 MNede is node address.
8 : Bnode ( node -- dmin zmin dmax zmax ) \ get node values 8 Ptr is address of previous node.
9 DUP 18 + QOVER 6 + @ 2 PICK 12 + @ 3 ROLL 8 + @ ; 9
18 18 @node fetches the values dmin,zmin and dmax,zmax from the node
11 : lnode ( dmin zmin dmax zmax damin node --) \ store node values 11
12 PP>R2+ 2/ RR8+ 1 RB1Z+!IRRE6+!R 18+ ; 12 lnode stores the values dmin,zmin, dmax,zmax and damin in node
13 13
14 : insert.node ({ node ptr -- ) \ insert new node into 1ist 14 insert.node 1insert node with address "node® just after
15 20UP @ SWAP 1 ! 15 node with address “ptr®.
Ser # 13 Ser § 33
# \ List functions - cont reh 115ep88 8 \ Global search reh 11S5ep88
1 1 HNodes are stored in increasing order of amin.
2 : findloc ({ damin -- ptr ) \ locate position for new node 2
3 head BEGIN 3 findloc Finds the address "ptr® of the node after which
4 DUP 2SWAP ROT @ 2DUP 4 amin is to be inserted.
5 WHILE 2+ 22 >R >R 20UP R> R> DU< 5
6 IF 20ROP EXIT THEN ROT @ 3
7 REPEAT 20ROP ; 7
8 8
9 : putlist ( dain zmin dmax zmax damin —- } \ add values to Jist 9 putlist Creats a new node, inserts it in the proper place
18 \ in ascending order 18 in the list, and stores damin, dmin, zmin,
11 20UP findloc node DUP ROT insert.node !node ; 11 duax and zmax in the node.
12 12
13 1 showall { --) \print out 1ist dmin zmin dmax zmax 13 showall Prints all nodes in the Yist in the order
14 head CR BEGIN @ 2DUP 14 dmin zain dmax zmax
15 WHILE DUP @node 3 ROLL . ROT . SWAP . . CR REPEAT ; 15
Ser # 14 Ser # 34
8 \ Global optimization reh 20Dec88 B \ Global search reh 28Dec88
1 :6g(z) (g--d) 1
2 G SWAP OVER MIN - ; 2
3 3 d(z) Calculates d =G - g{z).
4 :d(z) (z2--d) 4
5 9(z) 6-9(z) ; 5
6 6 Calculates  z* = zmin + ( dwin * T )/ ( dmin + dmax )
7 2~ ( zmin T duin dmax -- z) 7 T = zmax - zmin
8 OYER + -ROT UN* ROT UM/MOD NIP 8
] 1 HAX + ; 9
18 18 amin Calculates amin = (dmin * dmax) / T
11 : amin { dmin zmin dmax zmax -- ) 1 as a double number and puts it in the list.
12 DUP 3 PICK - DUP 1 > IF 12 If zmax - zmin = 1, there is no new segment so
13 2 PICK 5 PICK 13 don't bother putting anything on the list.
14 UK* ROT MU/HOD ROT DROP 14
15 putlist ELSE DROP 2DROP 2DROP THEN ; 15
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Ser 15 Ser ¥ 35

g\ reh 11Sep88 8 \ Global search reh 115ep88
1 VARIABLE maxg \ max. value so far 1 maxg Contains max value of g found so far.

2 YARIABLE maxz \ atz s maxz 2 maxz Contains value of z corresponding to maxg

3 VARIABLE cnt \ # of iterations 3 ent Contains the nuaber of iterations

4 A

§ : maxupdate (zg--29) 5 paxupdate  checks g for maxg

[ 2DUP maxg @ OVER < 6 if g > maxg then replace maxg with g & update maxz
7 IF maxg ! maxz ! ELSE 2DROP THEN ; 7

8 8 globinit initialization ent = 8 head « @

9 : globinit (- 9 maxg = @ wmark.dp = HERE

18 Bent | B head | 8 maxg ! HERE mark.dp ! ; 16

11 11 nextseg Removes the first node in the list ( containing the
12 : nextseg ( -- dmin zmin dmax zmax ff[list 8 8 B tf) 2 smallest amin )} and puts the four values dmin, zmin, damax
13 head DUP & DUP IF DUP @ ROT ! @node FALSE 13 and zmax on the stack under a true flag. If the list is
14 ELSE 8 B TRUE THEN ; 14 enpty four arbitrary (dummy) values are left on the

15 15 stack under a false flag.

Ser # 16 Ser # 36

g\ reh 200ec88 B \ Global search reh 28Dec88
1 : once [ dmin zmin dmax zmax - dwin zmin dmax zmax f ) 1 once Does the following for a segment from zmin to zmax.

2 DUP 3 PICK TUCK - 5 PICK 4 PICK 2 Finds z™ and g™ and update maxg.

3 2~ DUP g(z) maxupdate DUP G-g(z) -ROT G < NOT 3 If g™ = 6, quit

4 IF 2DROP TRUE EXIT THEM 4 else divide T into two segments

5 2SWAP 20VER 2SHAP amin amin 5 Tl = 2~ - zmin

[ nextseg ; 6 T2 = zmax - 2™

7 7 Calculate amin for each segment and add

8 : find.max { zmin zmax £ -- ) 8 two new segments to segment list.

9 globinit 2 PICK d(z) DUP 9 Choose segment with the lowest amin and remove from

18 IF 2 PICK d(z) DUP 18 segment 1ist.

11 1F 4 ROLL SWAP 4 ROLL 4 ROLL 1+ 1 DO once 11 find.max Finds the location of the global maximum G.

12 IF I ent ! LEAVE THEN LOOP 20ROP 2DROP 12 { § is maximum number of iterations }

13 ELSE 2DROP DROP NIP maxz ! G maxg ! THEN 13 If not found in # iterations, maxg contains the

14 ELSE 2DROP DROP maxz ! G maxg ! THEW 14 paximum value found so far. maxz contains the value of
15 mark.dp @ DP ¢ 15 z corresponding to maxg. cnt is the no. of iterations.
Ser £ 17 Ser # 37

8\ reh 20May88 B reh 24Har88
1 1 .title print out

2 & .title 2 Range #iter Hax., atz= %

3 CR 6 SPACES .* Range" 9 SPACES .* Fiter™ 3 SPACES 3

4 .® Hax.™ 2 SPACES .= at z =" 3 SPACES ." % CR ; 4 .line prints a line

5 5

6 : .line .* * 3 6 .num prints a number right justified in a field of width 4

7 7 then leaves 3 spaces.

8 : .num 4 .R3 SPACES ; \ print number justified 8

9 9

18 18

11 1

12 12

13 13

14 14

15 15

Ser £ 18 Scr § 38

g \ Sample test reh 28Dec88 8 reh 280ec88
1 1 testl calls find.max 18 times with the range zmin-zmax

2 1 testl 2 varying from 85-348 to 319-574. The maximum always

3 Jtitle 8 val ! 3 occurs at 348. Thus the initial width T is always

4 func.table fillup .line 4 255 and the maximum value at 348 moves through

5 B341 85 DOCRI 5 values of z starting at zmax and moving to zmin

[ DUP .num .t > % [ in steps of 26.

7 DUP 255 + DUP .num 3 SPACES 7

8 168 find.max 8 For each call of globmax the number of jteration

9 cnt @ .num maxg @ .num maxz @ .num 9 needed to find G is printed out together with the

15 cnt © 188 256 */ DUP .num 18 percent (cnt*188/256). At the end the average percent
11 + 26 +00P 11 for all 18 trials is computed and printed out.

12 18 / CR ." Avg. ¥ iterations =" ., ; 12

13 13

14 14

15 15




