Forth for IBM Mainframe Computers

S.N. Baranoff

Leningrad Institute for Informatics and Automation
USSR Academy of Sciences
14 liniya 39, Leningrad, 199178, US.S.R.

Abstract

The FORTH-ES system is described. It is an implementation of the Forth language (Forth-83
standard) for the ES Ryad 1 and Ryad 2 mainframes (IBM 360 and IBM 370 compatibles). The
system is substantially modular, with the same Forth nucleus running in different operating
environments.

The System Design

The FORTH-ES system runs under the OS/360 and CMS operating systems. It consists of a
Forth nucleus (binary threaded code placed into the dictionary), its extensions (Forth screens
with source text), and auxiliary support modules, which are written in IBM assembler and which
once compiled reside in a STEPLIB library as load modules of OS/360 (CMS uses object
modules). The module interface works under standard system conventions [1]. Every auxiliary
module performs severalrelated functions, its first parameter usually being the function number.
The Forth nucleus is stored as a library member and consists of binary data. Implementation of
Forth screens is determined by the corresponding support module, which performs exchange
with mass storage.

A run of the FORTH-ES system is started by an initial support module that receives control
from the operating system. It issues a system GETMAIN macro for the Forth address space,
initiates storage by placing the desired Forth nucleus into its lower addresses, and then passes
control to this loaded Forth system. On getting control back, the initial support module analyzes
the return code and either reiterates this cycle or stops the run by returning control to the
operating system.

A minimal Forth nucleus consists of a small dictionary (about 200 words with a size of 8K)
with a text interpreter. Its entry point is its very beginning. On being entered as an ordinary
assembler program the nucleus dynamically loads and initializes all the necessary support
modules (their names are stored within the nucleus as text constants, the loading being done
through the load SVC). A dialog support module is loaded first, and after that a dialog with the
user is started. By entering certain words the user may load new modules, change parameters of
the starting procedure, compile new word definitions, and so on. As a result, a new Forth nucleus
is created. The user may save the current dictionary contents as a new Forth module and the next
time start running with the new version.

Dialog

The standard Forth words KEY, CR, and EMIT, which perform I/O with the terminal are
implemented through calls to a module that supports dialog with fixed function numbers. The
called module should reside in memory and be initialized at that moment. There are several
versions of the dialog module, each one supporting a specificdialog system, OS, TSO, and BTAM

Journal of Forth Application and Research Volume 5, Number 3
389



390 The Journal of Forth Application and Research Volume 5 Number 3

being among them. Batch processing is considered as a particular case; the input text is read from
a sequential file and the output is written into some other file.

As an example, terminal I/O under the TSO is carried out by the TGET and TPUT macros,
which read and write whole terminal screens. Logically, the screen is divided into input and
output fields, one for the user to place his input string into, and the other for the Forth system
to display its output as the last portion of the dialog protocol. The user may save the protocol in
a file and print it out later.

Because of the screen-mode I/O with the terminal, the dialog support modules include code
for the words EXPECT and TYPE. But those two words may also be defined using KEY and EMIT.

Mass Storage

Three different types of Forth disk storage are used: usual text libraries, special libraries, and
direct access files. With libraries, each Forth screen is represented by a library member, the
number of the screen being contained in the 8 byte long member name. With a direct access file,
the screen number is regarded as a corresponding block number within the given file.

The disk support allows further extensions of the Forth nucleus bysimply LOADing the desired
Forth source screens.

Threaded Code

The system works with 16-bit direct addressing within the standard Forth address space of
64K. That means that the main unit of information is an IBM halfword. The Forth dictionary
starts at address zero, and the high end of the address space is occupied by the disk buffers, the
user ares, the text input buffer, and stacks that grow toward low memory.

After reading the Forth module into the address space, control is passed to its first byte
according to the standard call interface. The size of the address space and the size of the loaded
nucleus are passed as parameters. The module starts its work by setting pointers within the
address space and then jumps to the infinite loop of the text interpreter.

The implementation uses indirect threaded code [2]. An entry consists of the name field,
link field, code field, and a possible parameter field. Because of alignment requirements, each
entry starts at an IBM halfword boundary and the name field always contains an even number of
bytes, being padded with a zero byte if necessary. This does not influence standard programs since
theword COUNT returns a “true” length that may differ from the value of the count. The parameter
field in a colon definition is a series of code field addresses of other definitions, and its code field
itself points to the CALL procedure of the address interpreter. The series of code field addresses
within the parameter field ends with a reference to the EXIT entry, which performs the RETURN
action. The code field of a code definition points to its own parameter field where the appropriate
machine code resides. At the end of execution the code performs a jump to NEXT.

The address interpreter of this implementation is as follows:

USING NEXTRBASE
NEXT LH 14,0(RI,RBASE) Code field address
AR RLRTWO Increment I
NR 14, RMASK Clear high-order halfword
LH 15,0(14,RBASE) Forth address of machine code
NR 15,RMASK Clear high-order halfword
AR 15,RBASE Absolute code address
AR 14,RTWO Forth parameter field address

BR 15 Execute the code

A




Forth for IBM Mainframe Computers 391

CALL SR RRETRTWO Move return stack pointer
STH RLOGRRET) Savel
LR RI,14 New series of pointers
BR RBASE Jump to NEXT

RETURN LH LLO(RRET) Restorel
NR RILRMASK Clear high-order halfword
AR RRETRTWO Release return stack
BR RBASE Jump to NEXT

In the above source code the general register RBASE is a base register for the FORTH address
space, NEXT being at the zero address for Forth. RI is a pointer to the address currently being
interpreted. RTWO contains the important constant 2 (the increment). RMASK contains
another important constant, 65535, for clearing the high-order halfword of a register. And
RRET contains the absolute address of the top of the return stack.

The Assembler

Implementation of the built-in assembler follows the general pattern for Forth assemblers
[3]. The only difficulty is with the base-displacement scheme of addressing data in the IBM
mainframe architecture.

During compilation, address operands of machine instructions are represented by two values
— the address (which may be not yet defined) and its possible modifiers. Upon compiling an
undefined address, this reference is stored in a special table to be resolved later. The word
END-CODE checks all unresolved references. Following the system conventions, every piece of
machine code is addressed through register 15 when it is entered from the address interpreter.
The words USING, and DROP, control allocation of the base register.

Labels may be used within code definitions, as in the MIX assembler [4], by using the similar
words =F (a forward reference), =B (a backward reference), =H (define a label) and by denoting
labels by integers. These constructs allow conditional branches and loops on count according to
the appropriate machine instructions.

The Target Compiler

In order to bring about full modularity, a package for target compilation was developed as
two sets of Forth screens — one with the word definitions for the target compiler and the other
with the model of the Forth nucleus. The target compiler allows “build-up” of a new Forth system
at the very beginning. The user may substantially diminish the system by excluding from the
nucleus all unnecessary definitions and by compiling for some (or all) entries only their bodies
(code and parameter fields without the name and link fields). [This is what would be termed
headerless code in English, Ed.] The code produced by the target compiler is stored in an outer
library as a new, specialized, Forth module.

References

[l] IBM System/360 Operating System. Supervisor and Data Management Services. IBM
Systems Reference Library. 1970.

[2] Ritter, T and G. Walker. “Varieties of Threaded Code for Language Implementation.”
Byte,v.5 # 9, pp. 206-227. 1980

[3] Ragsdale, W. E “A Forth Assembler for the 6502.” Dr. Dobb’s Journal, # 59, pp. 12-24.
Sept. 1981.

[4] Knuth, D. The Art of Computer Programming.v. 1. 1973.



