Letters to the Editor

Forth and Standards

For the last ten years | have been a silent witness to the several attempts at establishing a set
of standards for the Forth language. I have greeted the widening of this effort through the
involvement of ANSIas a trend towards full recognition of Forth as anacademicand professional
system. Recent reports on the work of the X3J14 ANS Forth Technical Committee (for example,
see [DUNSS]), however, have made me concerned that the ongoing standardization smacks of
Medieval Scholasticism. (Instead of arguing about angels on a pin, members of the standards
team argue about whether words should be prefixed by a D or a 2.) Lexical arguments! seem to
take more tlme than semantic concerns such as machine-independent description of the Forth
interpreters,” language -extension mechanisms,’ as well as address-width problems. What seems
to have escaped the notice of all standards committees is that Forth is unlike all other conven-
tional programming languages!

A conventional programming language may be likened to a child’s Tinker Toy™ set. Here,
the sizes and colors of the components — wheels, rods, and connectors — are fixed and it is not
possible to use a new item, say, a cube, because it is neither provided nor constructible from the
primitive elements. A child compiles a structure and then plays with it — compile time strictly
precedes run time. The semantics of such a language can be specified by means of a single
monolithic interpreter which works according to the fetch-decode-execute cycle.

Forth, on the other hand, may be likened to a block of wood and a sharp whittling tool. Each
element of a structure being built must be individually constructed, so that arbitrary extensions
of the base language are possible. The Forth user constructs small components that can be
individually optmuzed to fit the task in hand. Not only is the abstract interpreter distributed over
the various data types, * but compilation and execution can be arbitrarily interleaved.

Can we ever achieve an adequate level of standardization in view of the high mutability of
Forth? I believe that we can, but we must proceed in an unconventional manner: The first step
is the identification of an irreducible subset of Forth. This subset is the smallest Forth that can
compile itself and be capable of extending itself to a more useful system. As a first proposal, may
I'suggest the following:

1. Inner interpreter — NEXT, NEST, and UNNEST
2. Outer interpreter — INTERPRET, EXECUTE, ASSEMBLE, COMPILE, CREATE, DOES>, and ; CODE,
and

3. Only other words are those needed to define the above ten words.

! I suppose one should be thankful that Forth is a syntax-free language!

Some work in this direction was reported in [SOL82], [SOL83}, and [SOL84].

A comprehensive survey of the extensible languages of the 1960s can be found in [SOL74].

Forth data objects built by means of the CREATE..DOES> mechanism are active objects, by contrast with data in
conventional languages which are strictly passive.

W

Journal of Forth Application and Research Volume 5, Number 3

355



356 The Journal of Forth Application and Research Volume5 Number 3

Formal definition of the minimal subset would give us confidence that programs could be
written to be correct. Formal definition of the extension mechanism would ensure every step of
the way from the minimal subset to the final product could be made correctly. Once the
theoretical basis of Forth is made secure by the above approach, we can proceed to the problem
of optimizing the performance of the extended Forth system. It is possible that this process will
lead to separate extended Forths optimized for numerical analysis, text processing, database
management, etc., but this should not be taken as a calamity — afier all, are we all not happy
with the concept that Forth becomes the application?

In conclusion, let me summarize my theses. Standardization of Forth should only encompass
the minimal subset containing no more than the words needed to auto-compile a Forth system. In
concert with this work, the formal definition of Forth, especially, the extension mechanism,
should be undertaken to provide the theoretical foundation for the total definition of the
language.

Nicholas Solntseff

McMaster University

Dept. of Computer Science and Systems
1280 Main Street West

Hamilton, Ontario, Canada 1.8S 4K1

References

[DUNSS] R.Duncan, “ANS Forth Meeting Notes,” Forth Dimensions, X (Number 1, May/June
1988), pp. 24-25.

[SOL74] N. Solntseff and A. Yezerski, “A Survey of Extensible Programming Languages,”
Annual Review in Automatic Programming, Vol. 7, Pergamon Press, London (1974),
pp. 267-307.

[SOLS82] N. Solntseff, “An Abstract Machine for the Forth System,” Proceedings of the 1952
Forth Conference (1982), pp. 149-155.

[SOL83] N. Solntseff, “An Instruction-set Architecture for Abstract Forth Machines,”
Proceedings of the 1983 Forth Conference (1983), pp. 175-183.

[SOL84] N. Solntseff and J.W. Russell, “An Approach to a Machine-independent Forth
Model,” Proceedings of the 1984 Forth Conference (1984), pp. 121-139.




