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Abstract

We have designed a 32 bit microprocessor that directly executes the Forth programming
language. This is the third in a series of Forth Reduced Instruction Set Computers (FRISCs). The
SC32 Forth engine improves on our previous designs in its more efficient load, store, literal, and
branching instructions; better support of multiplication and division; and a better approach tostack
caching. The processor’s instruction set consists of eight instruction types in three formats. The 32
bit wide data path contains two stack caches. The top portions of the parameter and return stacks
are cached in the microprocessor to improve performance while retaining a single data path
between memory and the CPU. The processor spends less than 1% of its time managing the stack
caches on typical Forth programs.

1. Introduction

This paper documents the third in a series of Forth Reduced Instruction Set Computer
(FRISC) processor architectures. Many aspects of the Forth programming language are directly
supported in the SC32 Forth engine architecture. The architecture can execute most Forth
primitives in a single cycle. All resources and data paths in the processor are 32 bits wide and
external memory is addressed as 32 bit words.

We gained much experience and insight into Forth oriented architectures in the design of
FRISC 1 and 2. [FRAES6], [HIAYES6] and [WILL86] Many elements of the earlier
architectures are clearly visible in the SC32. (The SC32 was originally called FRISC 3.
[HAYES8]) The SC32 improves on our previous designs in its more efficient load, store, literal,
and branching instructions; better support of multiplication and division; and a better approach
to stack caching. The processor has been licensed to a commercial venture (Silicon Composers
Inc,, Palo Alto, CA).

The SC32 instruction set was explicitly designed to implement Forth. Each instruction
executes in one cycle except for loads and stores which take two. Most of Forth’s primitive
operations can be represented with one SC32 instruction. For example, Forth’s binary arithmetic
operations such as + and - are single instructions and execute in one cycle. Similarly, binarylogic
operations like and, or, and xor execute in one cycle. In fact, any possible Boolean function of
two variables is possible. A rich set of binary comparison instructions (e.g. <, >, <>, u<, <=, etc)
are present. The SC32 also has many unary comparison and arithmetic instructions (e.g. 1+, 1-,
etc. and g<, 8=, 8>, etc.)

AnSC32 instruction can access the top fouritems on either the parameter stack or the return
stack. This allows the single cycle implementation of the usual stack manipulation operators (e.g.
drop, over, >r, r>, r@, nip, etc.) Access to the top four return stack locations provides easy use
of two sets of do..1oop indices. Access to the top four parameter stack locations allows a single
cycle (Forth-83) 2 pick or 3 pick in addition to over and dup.
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The SC32instruction set is more general than Forth’s pure stack virtual machine. As a result,
sequences of multiple Forth primitives can frequently be implemented with one instruction. For
example, arithmetic and comparison operators can often be combined with preceding stack
manipulation operations (e.g. over +, r>@= ,over over =, etc.) This capability is especially useful
with the SC32’s load and store instructions. The load and store instructions provide a single,
powerful addressing mode that covers the most common array and data structure access opera-
tions. So, fetching a variable at location 134 (e.g. 134 @) or fetching the eighth cell of a data
structure (e.g., over 8 + @) can be done with one instruction. Forth’s vanilla @ operator is simply
a special case of the general purpose load instruction. (A Forth ! actually takes two instructions:
one to do the store and a drop to clean up the stack. The extra drop can frequently be folded into
a following instruction.)

The SC32 has single cycle call, branch, and conditional branch instructions. The call and
branch instructions directly implement Forth’s colon nesting operation and branch operation.
?branch is implemented with two instructions: an instruction to test the value on top of the
parameter stack followed by a conditional branch. The test can frequently be combined with
preceding operations (e.g. 8< if, over > while, dup 8= until, etc.) resulting in two cycle
test-and-branch operations. Similarly, Forth-83’s Toop and +1cop can be done in two cycles.

The SC32 also has fast literal, quick return, and multiply and divide step instructions. The
fast literal allows a 16 bit literal value between 0 and 65535 to be pushed on the stack in one cycle.
The quick return provides a way for many returns to be done in zero time. The multiply and divide
steps can be used to create efficient multiply and divide operations.

One of the most important considerations in the design of a Forth processor is delivering
stack operands to the processor. A consequence of executing one instruction every cycle is the
need to fetch a new instruction every cycle. This leaves no spare bandwidth in the processor-to-
memory port for fetching stack data. Our solution is stack caching: the top portion of each stack
is buffered on chip. The remainder of each stack is in the same memory as instructions and data.
The stack cache hardware gives the programmer the illusion of having arbitrarily large on-chip
stacks.

As the stack moves up and down within the on-chip stack cache, the cache occasionally
overflows or underflows. On overflow, instruction execution is suspended for two cycles while a
value is moved from the stack cache to main memory. Underflow is handled similarly. The
overhead of managing the stack cache is small: less than 1% of the processor’s time is spent on
cache management for typical Forth programs. This is a small price to pay for the advantages of
the stack caches. Since the stacks are kept in the same address space as instructions and data,
only one address/data bus is needed to access them. This results in a small 84 pin package. This
also allows a stack to potentially grow as large as the address space of the processor ( 232 or
4,294,967,295 cells). Finally, since instructions, data, and stacks, are in the same address space,
they can all be kept in the same memory chips.

The remainder of this paper describes the architecture of the SC32. Sufficient detail is
provided 10 enable the reader to understand the workings of the processor and to be able to
program it. The following section describes the microarchitecture of the data path. Section 3
describes how the instruction set is used to control the data path. The next section describes how
instructions execute and how the instruction set implements Forth. Section 5 discusses the stack
caches. Section 6 describes some aspects of the processor’s external interface. Section 7 discusses
the rationale for some of our architectural decisions. Finally, section 8 gives some results of the
implementation and first fabrication run.
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2. Micro Architecture

Forth programs use two stacks: the parameter stack which is used for passing arguments to
functions and a control flow stack which primarily holds subroutine return addresses and is
consequently called the return stack. Most Forth primitives take operands from one or both
stacks, push or pop the stacks, and return a result to one of the stacks. To achieve the execution
of one Forth primitive per cycle, these stack accesses must occur in one cycle. This is supported
by two stack caches in the data path.

Forth’s heavy use of subroutines is also directly supported. The instruction set and the
arrangement of the data path allows subroutines to be called in one cycle and many returns to
oceur in zero cycles.

Those elements of the data path visible to the programmer and their connectivity are shown
in Figure 1. The parameter and return stack caches each consist of sixteen 32 bit registers. The
caches each have two read ports and one write port. The instruction set allows access to the top
four locations of either stack. Cache overflow and underflow are handled transparently to the
program (see Section 5).

Thus Abus
T T UDR'’s T pe
param. [FIRISIT return |FIRISIT user
stack {OOI010] stack JO[OIO0O) regs
cache |S|S|SIS cache |RIRIRIR

L

In addition to the stack caches there are four global utility registers (called UDRs for
historical reasons). Two of these registers are dedicated to the stack caching algorithm but the
other two may be used as a system designer sees fit. For instance they could be used to implement
an additional stack or a frame pointer for a traditional language such as C.

The ALU provides the expected logic and arithmetic functions. A single bit left shifter on
the input side of the ALU and single bit right shifter on the output are available for multiplication
and division steps. A single condition code flag (FL) is provided. The flag can be loaded with any
one of sixteen ALU conditions or the shift out bit from one of the shifters. Subsequently, the flag
can control a conditional branch, be fed into the ALU’s carry input for doing multiprecision
arithmetic, or be read onto a bus yielding a 32 bit G or -1 truth value.

Zero is a read only register that always returns the value zero. This register is useful for
constructing literals and addresses for loads and stores (see Section 3). PC is a program cOunter.
There is also a processor status word (PSW not shown in Figure 1) that contains the state of the
interrupt system and the stack caches.

Three global busses provide communication between the resources described above. At the
beginning of the execution of an instruction, Bbus delivers an operand to the ALU from aregister
resource (stacks, utility registers, zero register, etc.). The other ALU operand arrives on the Tbus
and is always either the top of the parameter stack (TOS) or a literal value from the instruction
word. After the ALU operates, the result is sent to a destination register via the Bbus. The Bbus
is connected to the off-chip data bus when doing load or store instructions.

Figure 1. Data Path
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The Abus addresses the external world. Normally, the program counter is driven onto the
Abus to fetch the next instruction. The top of the return stack (TOR) can also drive the Abus so
that a return from a subroutine call can occur concurrently with execution of many instructions.
During load/store instructions the ALU is used to calculate an address which is subsequently
driven onto the Abus. The UDRs may also drive the Abus during stack cache management
operations. Not shown in the figure is a path from the instruction register to the Abus for doing
branch or call instructions (see below).

3. Instruction Set Architecture

The SC32 instruction set consists of eight instruction types. There are three control flow
instructions, four load/store instructions, and a microcode instruction. All SC32 instructions are
32 bits wide. Each of these three instruction categories are reflected in the three instruction
formats shown in Table 1. The three most significant bits (msbs) of the instruction determine its
type and the interpretation of the remaining 29 bits.

control flow Type:3 Address:29
load/store Type:3 Next:1 R1:4 R2:4 Stack:4 Offset:16
micro Type:3 Next:1 R1:4 R24 Stack:4 ALU:16

Table 1. SC32 Instruction Format

The control flow instructions are call, branch, and conditional branch. The destination is an
absolute address embedded in the instruction. The conditional branch will be taken if the flag
(set by a previous instruction) is 0.

The upper sixteen bits of the load/store and micro instructions have the same format. In both
formats, the R1 field selects a source register, R2 selects a destination register, and Stack selects
any combination of pushing or popping the parameter and return stacks. The Next field

Field Action Size
Next next instruction address 1
PC
TOR
RI source register of Bbus 4

T0S, 808, ROS, FOS

TOR, SOR, ROR, FOR
UDRG, UDRI, UDR2, UDR3
PC, PSW, Zero

R2 Bbus destination register (source during stores) 4
T0S, S0S, ROS, FOS

TOR, SOR, ROR, FOR
UDRG, UDRI, UDR3, UDR3
PC, PSW, Zerw

Stack stack operation 4
push parameter stack

pop parameter stack

push return stack

pop return stack

pop both stacks

push both stacks

push parameter stack, pop return stack
pop parameter stack, push retumn stack
nop

Table 2. Common Instruction Encoding
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determines whether the incremented program counter or the top of the return stack is used to
provide the address of the next instruction. The common instruction encoding is shown in Table 2.

The four load/store instructions are load, store, load address low (lal), and load address high
(lah). In these instructions, the ALU operation is always addition performed on R1 and the
unsigned Offset embedded in the low 16 bits of the instruction. A register transfer level notation
summarizes the operation of these instructions in Table 3. The * in Table 3 denotes an address
computation so, for a load instruction, R1+0Offset is the address of data to be loaded into R2. A
single addressing mode, register indirect plus offset, is provided. Degenerate cases of this
addressing mode yield other useful modes. Setting the offset to zero produces a register indirect
mode. Setting R1 to the Zero register allows absolute addressing within the low 64kwords of
address space.

load: *(Ry + Offset) » Ry
store: *(R1 + Offset) < Rz
load address low (lal): Ry + Offset - Ra

load address high (lah): Ry + Offset 215> R,

Table 3. Load/Store Instructions

The load address instructions are degenerate loads in that an address is computed but no
data is fetched. Instead the address is saved in R2. The lah instruction is similar to lal except that
the offset is shifted left sixteen bits before being added to R1. The primary use for these two
instructions is the construction of literals. Sixteen bit literals can be produced by a single lal
instruction. Any 32 bit literal can be constructed by an lah followed by an lal.

Forth Code SC32 Instruction

¢ *(TOS + 0) » TOS
! *(TOS + 0) « TOS; 4 P
P

avariable @ *(Zero + 327) » TOS; } P
over @ *(8O0S + 0) - TOS; | P
over anarray + @ *(SOS + 1234) » TOS; | P
dup 9 + @ *(TOS + 9) - TOS; | P
1234 Zero + 1234 - TOS; | P
fedchad8 Zero + fedc0000 -~ TOS; | P

TOS + ba%8 - TOS

Table 4. Uses of SC32 Load/Store Instructions

Table 4 shows several example uses of the SC32 load/store instruction category. In the table,
stack operations that push or pop the parameter stack are denoted by | P and 1 P respectively.
The first two examples are implementations of @ and !. The next example shows the fetch of a
variable named avariable at address 327. Since the compiler knows this address at compile
time, there is no reason not to bring it in line as a literal and combine it with the @ that follows.
Indexing into an array or fetching a member of a record structure can be managed similarly. A
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peephole optimizer has been written as part of our metacompiler that handles all of these cases.
The load address low instruction allows the creation of small literals in the range 0 t0 65535 in
one cycle. Most literals found in Forth programs are within this range. Larger literals can be
built in two cycles.

The micro instruction is the workhorse of the processor since it is used to implement most
of Forth’s primitive operations. All micro instructions consist of an operation performed on R1
and TOS with the result stored in R2. The ALU field selects the operation performed. This field
has two formats, one for doing arithmetic or logic operations and one for doing shift, multiply,
or divide steps (see Table 5). The Sel field selects the interpretation of the remainder of the ALU
field. The encoding of the ALU subfields is shown in Table 6.

arith | Sel:1 | Bsrc:1 | ALUcond:4 Cin:4 | Flagil AlUop:7
shift | Sell | Bsrc:1 } ALUcond:4 Cin:i4 | Fagl Shifl:Z‘ Sin:1 1Slep:2‘ Flagin:1 21

Table 5. ALU Instruction Format

In the arithmetic micro instructions, the AL Uop field controls the ALU. The carry input to
the ALU, selected by the Cin field, may be either 0, 1, or the flag value computed in an earlier
instruction. If the Flag field is enabled then FL is loaded with the ALU condition selected by the
ALUcond field. Possible ALU conditions include overflow, carry, zero detect, and signed or
unsigned comparison results. After the arithmetic operation is done, the Bsrc field determines
whether the ALU result or the value of FL is stored in R2. Note that in Table 6, FL denotes the
flag being computed in the current instruction and FL' indicates the previous value of FL. If no
newvalueis loaded into the flag on the current instruction then FL =FL’. Only micro instructions
can effect the flag.

Shift micro instructions are interpreted similarly except that the seven bit ALUop field is
replaced with a two bit Step field and shift control fields are added. The Step field provides an
ALU no-op when only shifting and two forms of conditional add for implementing a multiplica-
tion algorithm or a restoring divide algorithm. The conditional steps work by forcing the A input
of the ALU to zero if the condition (in parentheses in Table 6) is false. The Shift field chooses
left, right, or no shift. The left shift input always comes from FL'. The right shift input is selected
by the Sin field and can be FL’ or the current ALU condition. If a shift micro instruction loads
the flag, Flagin selects the source of the flag input: the ALU condition or the result of a shift.
The Shift field determines which shifter provides the result.

Table 7 shows how some representative Forth primitives are implemented with the SC32
micro instruction. The final entry in the table illustrates how multiple Forth primitives can be
packed into one SC32 instruction.

The interpretation of almost all of the instruction fields is independent of other fields. For
example, the Next field allows TOR to be loaded into the program counter and fetch the next
instruction. But to implement a return from subroutine instruction you must also specify popping
the return stack in the Stack field. The interdependency between the Flag, Shift, and Flagin fields
described above is the only exception.

There are a few restrictions on the execution of some of the instructions that are not evident
from the above tables. The PC cannot be explicitly loaded by an instruction even though this
possibility is implied by the R2 field in Table 2. The PC may only be used as the source of data in
astore instruction. Not all of the ALU conditions in Table 6 can be guaranteed to have meaningful
values if the ALU is doing a combinational logic operation. Only the 0, 1, Z, N, and their
derivative conditions will be valid. All of the conditions are meaningful when the ALU is
performing arithmetic.
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Field Action Size
Bsre result driven on Bbus 1
ALU, FL,
ALUcond ALU condition* 4

0.Z,N, G V. NsorV, -C | Z,
QorV) | Z, 1, ~Z, =N, =G, =Y,
“(NzotV), ~(~C| 2),
~((N%V) | Z)

Cin carry input 2
0,1, FL', ~FL’

Flag Flag control 1

nop
load

ALUop ALU operation* 7
0,-1, b, a3, =b, —a, a-b, a|b,
axor b, ~(a-b), ~(alb),
~(a xor b), b~a~—Cin,
a~b—~Cin, a+b+Cin,
b+Cin, a+Cin, -~b+Cin,
-a+Cin, b~=Cin, a~—Cin,

Shift select shifter operation 2
shift left
shift right
none

Sin right shift source 1
FL'
ALUcond

Step step operation® 2
b+Cin

b-a—=Cin

conditional a+b+Cin(FL")
conditional a+b+Cin(~FL")

Flagin source of flag input 1
AlUcond
shift out

*legend: b=R1,a=TOS and —~=not, -=and, |=or

Table 6. ALU Encoding

4. Instruction Execution

Almost all SC32 instructions are fetched and executed in two cycles (see Figure 2). However,
since the next instruction is fetched while the current instruction is being executed, the net
throughput is one instruction per cycle. Load and store instructions require an extra cycle to
execute since accessing memory prevents an instruction fetch. The first cycle (which is identical
to the normal execute cycle) is used to compute an address, while the extra cycle actually does
the load or store.

Each cycle consists of two phases. In the first phase of the cycle, the operands are fetched
from registers and placed in the ALU input latches. Concurrently, the address of the next
instruction is sent to external memory. On the second phase, the ALU operates and the results
are sent to the destination register. The new instruction is received and latched.

The only time the two phase execution is apparent to the programmer is when pushing or
popping the stacks. Pushing or popping a stack does not take effect until the second phase. So
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Primitive SC32 Instruction
R1 op TOS - R2; cc - FL; stackop; next
dup TOS - TOS; P
over SOS » TOS; | P
>r TOS - TOR; tP; IR
r> TOR -» TOS; tR; {|P
1+ TOS+1 -» TOS
g= TOS; Z -+ FL - TOS
+ SOS+TOS -» TOS; tP
< SOS~TOS; NxorV - FL - TOS; tP
exit Next=TOR; tR
over g< SOS; N -+ FL » TOS; P

Table 7. SC32 Implementation of Some Typical Forth Primitives

an instruction that references SOS in R1, TOS in R2, and pops the parameter stack is referencing
the same physical register on both phases (see definition of +in Table 7).

5. Stack Caching

A mechanism is provided to allow a stack to grow larger than the on-chip registers. A stack
caching algorithm is implemented in the SC32 giving the programmer the illusion of arbitrarily
large on-chip stacks. Since the instruction set allows access to the top four elements of either
stack at any time and since a store instruction can pop a stack then write out the fourth element
down, the algorithm must guarantee that the top five stack elements are always present.

We have observed that the stacks of running Forth programs stay near a certain depth for
long periods of time while many small oscillations of the depth occur. The caching algorithm,
using the on-chip registers as a window into the stack, attempts to adjust itself so that the window
is centered on the average depth. The goal is to minimize the number of times a cache overflows
or underflows.

The registers are used as a circular buffer (see Figure 3). Two sliding points mark the overflow
and underflow positions of the buffer. A push causes the stack pointer to increment. If the stack
pointer reaches the overflow mark, the register at the bottom of the window (one past the new
stack pointer) must be pushed onto an external stack. The processor inserts two cycles to write

9A ¢B:
instruction f fir aw
instruction f fjr aw f = fetch instruction
load instruction f ff{r a load i r=readregister
instruction i f f r aw a = ALU operate
instruction * : f fjr aw] w=writeregister
t=0 1 2 :

&
A%
[
YV

Figure 2. Instruction Execution
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the register out to external memory and to adjust the overflow marker. In the first cycle a UDR
dedicated to point to an external overflow area is decremented and the overflow/underflow
markers are slid one register clockwise. In the second cycle, the register one past the stack pointer
is written to the overflow area. On the first cycle of underflow a value is read from the overflow
area into the register four positions below the stack pointer and the markers are slid one position
counterclockwise. On the second cycle the dedicated UDR is incremented. UDRO is devoted to
the return stack and UDRI to the parameter stack.

external memory:

stack A A
pointer
UDR
underflow
@ P . .
increasing
overflow addresses
stack
overflow
7 7

Figure 3. An Initialized Stack Cache

A cache enable bit, the stack pointers, and overflow markers are available in the PSW. The
cache enable bit is cleared on reset but the stack pointers and markers must be initialized by the
programmer. The format of the PSW is given in Table 8. The underflow marks are always twelve
registers below the overflow marks. Figure 3 shows the configuration of the cache after a typical
initialization.

PSW unused:14 ie:l cache parameter | parameter return return
format enable:1 top:4 overflow:4 top:4 overflow:4

Table 8. PSW Format

6. Reset and Interrupts

An external reset causes the processor to fetch and execute an instruction from memory
location 0. A good instruction to place there is a subroutine call to the starting point of an
initialization program. The reset clears the cache enable and the interrupt enable bits.

The SC32 has a single interrupt request pin. An interrupt response occurs when interrupt
request is asserted and interrupts are enabled. The interrupt response is similar to the reset
response except that memory location 1is used. In addition, an interrupt acknowledge (INTACK)
signal is asserted by the processor. A system designer may choose to use this signal so that the
interrupting device, instead of the memory system, delivers the interrupt vector.

The interrupt enable bit (i) is available to the programmer via the PSW. Writing to the ie is
internally delayed by one cycle. This allows an interrupt service routine to reenable interrupts
and then return from the interrupt so that a response to a pending interrupt is delayed until after
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the return. On entering an interrupt service routine the return address plus one is stored on the
return stack. It is the programmer’s responsibility to decrement this address before returning
from the interrupt.

The SC32 also has a Direct Memory Access (DMA) request pin. When an external device
requests DMA, the processor tristates the address, data, and read pins and asserts a DMA
acknowledge signal. The external device controls the bus until it releases DMA request.

7. Discussion

The SC32 was designed and implemented in six months. This short time frame limited the
number of features that could be addressed and constrained the complexity of the design.
Architectural features with proven utility were borrowed from our past design efforts and from
current practice in conventional processor design. When neither history nor analysis showed a
clearcut advantage for one decision over another, the simpler approach was usually chosen.

The SC32 inherits many features from FRISC1and 2. Measurements made during the design
of FRISC 1 showed that subroutine call and return were the most frequently executed operations
in Forth programs [FRAE86]. The design of FRISC 1 and 2 concentrated on a fast subroutine
call and easy implementation of Forth’s stack and arithmetic primitives. FRISC 1 and 2 have two
instruction formats: a subroutine call and a user-defined microcode instruction. The msb of the
instruction determines its type. A zero indicates that the remaining 31 bits are the address of a
subroutine to call. The call executes in one cycle. A one in the msb indicates that the following
31 bits are a microcode word that directly controls the resources of the chip’s data path. The
microcode word can represent most Forth primitives (e.g. dup, over, +, <, =, etc.) and the data
path can execute most primitives in a single cycle. Primitives that must access memory take two
cycles to execute. These include branch, ?branch, @, !, and (Titeral).

The Forth instruction frequency measurements done during the design of FRISC 1 showed
that, after calls and returns, the most common instructions were loads, stores, and literals. These
results are more in line with what is observed in conventional programming languages [KATESS].
Consequently, we were able to borrow ideas from many other processor designs where these
issues have already been studied. In particular, our single register-indirect-plus-offset addressing
mode is found in most RISCs [HENN82A], [PATT85]. This addressing mode covers the most
common array and record structure access operations. Register indirect addressing and absolute
addressing (using the Zero register, another common RISC feature) are simply special cases of
the one addressing mode. More complex, less frequently used addressing modes can be built using
multiple instructions [CHOW87]. The SC32’s register-indirect-plus-offset load and store in-
structions capture many Forth programming idioms in addition to Forth’s traditional @ and !
(see Section 3).

Given the load instruction, it was relatively easy to design a load address instruction. This
allows the most common literal values to be introduced into the data path in one cycle. Other
instruction enhancements over FRISC 1 and 2 are a single cycle branch and a conditional add
instruction. The conditional add can be used to construct a multiply step with two cycles per bit
or a divide step with three cycles per bit.

Another improvement found in the SC32 is the Next field that selects the source of the
address of the next instruction. Usually, Next specifies the PC but TOR can also be used. Thus,
as with the Novix NC4016 [GOLDS85], concurrent execution of an instruction and a subroutine
return is possible. A peephole optimizer can frequently combine return operations with the
preceding primitive. Applying the optimizer to a large (12,000 line) Forth program resulted in
the elimination of ~25% of the returns with this technique. The peephole optimizer also
eliminates returns by converting a call-return pair into a branch. On the same program, ~ 50%
of returns were removed in this way for a total of ~75% of all returns eliminated.
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The SC32 has no pipeline other than the overlap of instruction fetch and execution. Deeper
pipelines are common in RISC processors designed to execute conventional programming
languages. Much effort has gone into developing hardware and software techniques that avoid
the pipeline stalls caused by branch instructions [MICFA86]. These typically involve a delayed
branch instruction and a compiler that can fill the delay slots. This issue would be even more
critical in a pipelined Forth processor. An examination of typical Forth programs indicated that
the control flow was changed (via calls, returns, or branches) very often: about once every three
or four instructions [FRAES6]. Since it was not obvious how effective a compiler would be at
filling all the delay slots, we decided on a shallow pipeline and a simple compiler.

One of the most important aspects of the design of a Forth processor chip is the management
of the stacks. All three FRISCs have used stack caching. FRISC 1 and 2 used a naive cache
management algorithm with cache overflow and underflow serviced by high priority interrupt
routines. In the SC32, a much improved algorithm has been implemented in hardware.

Our stack caches are not true caches (a value held on chip is not a copy of a value in memory)
but are top of stack buffers. In this respect they differ from the stack caches used on the AT&T
Bell Lab’s CRISP machine [DITZ87]. Our stack buffers are more closely related to the register
window schemes used in some RISC processors [TAMI83]. Register window machines buffer
recent procedure invocation frames whereas we buffer individual registers.

The two key design parameters of the stack cache are its size and the number of registers
written on overflow and read on underflow. To choose the number of registers moved on
overflow/underflow, we studied stack caches of 8, 16, and 32 registers. The number of registers
moved on overflow/underflow was varied from one to the size of the cache minus five (since our
instruction set allows the top five elements to be referenced within an instruction, they must
always be in the stack cache). Each stack cache configuration was simulated, using stack depth
traces obtained for seven Forth programs (see Table 9). The performance of each cache con-
figuration was extremely sensitive to initial stack depth, so the initial depth was varied over the
possible range. The worst case behavior was used 1o characterize each configuration. (A more
complete description of this study should appear shortly [HAYES9].)

flower: A graphics program drawing a complex geometric figure.

meia: The (meta) compilation of a new Forth system.

neural: A back propagation neural network simulation learning xor.
traps: A 50 rule expert system for spacecraft TRAjectory Preprocessing.
huff: Huffman encode a text file.

fib: Recursively compute the 24th Fibonacci number.

acker: Recursive Ackerman’s function.

Table 9. Stack Analysis Benchmark Programs

The simulations measured overflows/underflows per primitive executed, an implementation
independent quantity. We would like to know the percentage of cycles spent on cache manage-
ment (overhead) given a particular implementation. Therefore, cost models of different im-
plementations were applied to the simulation results in a post processing phase. For example,
Figure 4 shows the overhead in a 16 register parameter stack cache where each overflow/under-
flow is handled in hardware stalling the processor two cycles (it was assumed each primitive could
be executed in one cycle). These results strongly indicate that writing one register on overflow
and reading one register on underflow minimizes cache management overhead. The results for
the return stack and for 8 and 32 register caches were similar. In fact, the one register conclusion
held for all implementations that we studied!
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Figure4 Stack Caching Overhead vs. Number of Registers Written/Read

These results convinced us to implement a one register overflow/underflow algorithm in
hardware in the SC32. In Figure 4, the leftmost set of points (one register written/read) predict
the overhead that should be seen in the SC32’s parameter stack cache. The overhead is under
1% for all the benchmarks except acker. The stack depths for this recursive function vary in a
wildly chaotic fashion. This is an atypical Forth program and was run to bring out the worst
possible behavior of the stack caching algorithm. However, the overhead reached only 10% in
each stack for a total of 20% overhead.

The choice of stack size is influenced by two conflicting demands: minimizing stack over-
flow/underflow overhead by having a large cache, and minimizing context switch times by having
asmall cache. The stack traces described above were used again to study the effect of intermittent
context switches on the stack cache management. A “context switch” was introduced at intervals
0£1000, 10000, and 100000 primitives. Context switching is done by pushing a stack fifteen times,
letting the overflow mechanism write out the cache contents, then popping the stack fifteen times,
letting the underflow mechanism load in a new context. No “cost” was assigned to the switch
itself, but the effect of the switches on the number of overflows and underflows per primitive was
calculated.

Figure 5 shows the cache management overhead in the parameter stack with context
switching (assuming a one register move on overflow/underflow) versus the cache size. Each
point represents the geometric mean of the overhead of all seven benchmarks. The curve labeled
“infinity” is the no context switching case shown for comparison. As expected, the overflow/un-
derflow overhead decreases with larger caches and increases with more context switching.
However, beyond a certain point, larger caches offer diminishing returns. We conclude that a 32
register cache is best, but that 16 works almost as well when context switching is considered.

A number of features were deliberately excluded from the SC32 design. The SC32’s intended
application is advanced embedded systems. Memory management facilities are typically not
needed in embedded systems and support for such is not provided. The SC32 does not support
byte addressing; memory is addressed as 32 bit words. Providing only word addressing simplifies
the instruction set and lets the processor run faster by avoiding the need for byte positioning
multiplexors [HENN82B]. Finally, the SC32 has no floating point support. This was beyond the
scope of what could be accomplished in six months.
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Figure 5. Stack Caching Overhead vs. Cache Size

8. Results and Acknowledgements

The SC32 architecture has been implemented in a 34,000 transistor CMOS chip. The chip
features that use the largest number of transistors are the stack caches (™ 40% of all transistors),
ALU and ALU condition logic (™ 20%), stack cache management (~ 10%), and instruction
decode and control (™ 10%). The internal cycle time of the chip was dictated by the speed of the
ALU plusasubsequent ALU condition beingloaded into a register. The processor needs 35-55ns.
external memories to run at 10MHz.

Chips have been fabricated by United Silicon Structures using a 2um direct E-beam write-
on-wafer process. Chips from the first fabrication run are fully functional and work at 10MHz.
The part is packaged in an 84 pin PGA and consumes 650 mW,

This design drew heavily on ideas from earlier FRISC designs. Therefore, the contributions
of Martin E. Fraeman, Robert L. Williams,and Thomas Zaremba are acknowledged here. Finally,
we would like to thank the far sighted members of APLls Computer Architecture Thrust Panel
and IR&D Committee for supporting this work. This work was done under Navy contract
N00039-87-C-5301.
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