Abstracts of the
Tenth Asilomar FORML Conference

November 25 - 27, 1988
Asilomar Conference Center
Pacific Grove, California

Music Reader:
A Program Converting Music Score to Machine Readable/Playable Code
Pei-Tao Ting
Beacon Christian School, San Carlos, CA

C.H Ting
Offete Enterprises, Inc., San Mateo, CA

1t is rather tedious to program a computer organ to play Bach’s organ music because every note has to be entered
manually. The process is very time-consuming and error-prone.

A hand-held scanner HS3000, made by DFI, was installed in our XT computer and used to scan music scores. The
scanned image is stored in the Dr. Halo’s .CUT’ format on a hard disk. The scanned image is then analyzed and valid
music notes are extracted from the binary image. The pitches of the notes are determined from their locations in the
scanned image. Groups of notes are assigned to proper voice channels and are written out to an output file as a sequence
of chords.

The chords written to the output file are in a form suitable for playing on the computer organ through a six channel
tone generator. The conversion process is quite efficient. The conversion rate currently is about two chords per second,
more than an order of magnitude faster than manual entry.

The conversion program is not yet perfect. Notes are frequently mis-assigned to neighboring pitch. Channel
assignments depend upon the position of notes, and can be confused when many notes ocurred on the same staff and when
voices cross each other.

This music reading program, even at its present primitive state, greatly enhanced our productivity in coding Bach’s
organ music. Most of the pieces the second author played at the Real Time Programming Convention were first entered
using the scanner. )

Techniques, results, problems, and possible improvements in reading music scores automatically will be discussed.

Tree Structure
Glen B. Haydon
Haydon Enterprises, Box 429 Route 2, La Honda, CA 94020

Tree structures are common in a variety of studies: Functional programming, natural languages, artificial languages,
brain function, hypertext, Forth and the WISC CPU/32 computer architecture. Conventional computer architectures
provide a poor platform for the execution of tree structures.

MENU: A Forth Menu Compiler
; Kenneth B. Butterfield
Los Alamos National Laboratory, PO. Box 1663, MS J562, Los Alamos, NM 87545

Menu-driven command interpreters are an effective means of controlling portable instrumentation where input may
be limited to a hex keypad and output to a few lines on a liquid crystal display. The MENU compiler uses the name fields
from the words comprising the menu options as prompt strings. It produces compact program code, thus conserving
memory that is often limited in ROM-based systems. Input for menu function selection is vectored to allow switching
between input sources. The host system consists of the eight-bit Motorola M68HC11 processor and Max-FORTH
(FORTH-83).

Journal of Forth Application and Research Volume 6, Number 1

83



84 The Journal of Forth Application and Research Volume 6 Number 1

Incremental Recompiling through Secure Forward References
Mike Elola

By making the physical layouts of data structures alike, we make reuse of operations more of a possibility. See the

first installment of “Designing Data Structures” (EL.O88) for a detailed explanation.
A General List Processing INTERPRET for 83
Jeff Elliot
EVEREX, 245 N. Main Sebastopol, CA 95472

This paper discusses an alternative definition of INTERPRET and describes a set of ‘generalized list processing
definitions. Advantages to this method include reduced dependence on instream syntax and stack arguments, improved
readability, and better error handling. This technique could be useful in building any general object-oriented FORTH
application.

Compatability for Floating Forth
or
Any Forth is Good Enough
Robert L. Smith

Many people have complained about various incompatibilities among different Forth systems. I am unaware of any
significant software packages which can load and run on a variety of Forth systems without significant alterations. Partly
as an experiment, | have implemented a high level Floating Point package, called FLOAT4TH.BLK, which can load and
run on a variety of 16 bit Forth systems, including polyFORTH, FIG-Forth, 79-Standard, and 83-Standard systems. For
the systems I have been able to try, no changes in the source code have been necessary.

Multitasking: The Right Way
John R. Hayes
John Hopkins University/Applied Physics Laboratory

Traditional Forth multitasking requires each process (task) to voluntarily release control of the processor at
reasonable intervals. In contrast, a preemptive multitasking system can switch between processes whenever necessary.
The system is responsible for deciding which process runs. The disadvantage of this approach is that the occurrence of
real-world (real-time) events such as the arrival of interrupts effects the order in which processes are run and suspended.
Consequently, the programmer must use interprocess synchronization operations when the execution order matters. This
paper describes the use of wait and signal synchronization primitives in a Forth preemptive multitasking environment.
An extended example showing howwait and signal perform mutual exclusion, event notification, and resource allocation
is presented.

Dynamic Memory Allocation
Klaus Schieisiek-Kern
DELTA t GmBH, Roter Hahn 42, D-2000 Hamburg 72, FRGermany

Implementing a time-sliced multitasker in Forth reveals the inadequacy of the BLOCK concept — the validity of a
block address cannot be guaranteed any longer. The words ALLOCATE and FREE are defined to manage main memorywhich
can be explicitly used to store mass storage buffers (records), data- and return-stack, string-stack and string-variables. As
it turns out, an optimal algorithm for dynamic memory allocation is more compact than a clean implementation of an
LRU-scheduled block buffer scheme.

Foolish Old Man Moving a Mountain—Documenting F-PC System
‘ C. H. Ting
Offete Enterprises, Inc., San Mateo, CA
F-PCisaversion of Forth for IBM-PC/XT/AT computers, derived from F83/8086. It is implemented by Tom Zimmer

and Robert Smith with substantial extensions, modifications and enhancements so that very large application can be
programmed and run at high speed in these readily available and economical platforms.

Major features include:
o Use handles instead of file control blocks
« Use sequential text files instead of block files
o Integral WordStar-like text editor with on-line help
« 20,000 lines per minute compiling speed with 10 Mhz AT
» Separated heads



Abstracts of the Tenth Asilomar FORML, Conference 85

» 64 Kbyte code segment

» 128 Kbyte or more for colon defintions

o Access to 1 Mbyte of memory space

o Automatic configuration to CGA, EGA, VGA, Monochrome cards
o Turnkey and metacompilation of applications

o Multitasker

¢ Enhanced debugger

¢ Hardware and software floéting point packages

o Tons of user contributed applications

Documenting such a huge system is a challenge. So far we have generated two documents to support this system:
E-PC Users Manual and F-PC Technical Reference Manual. The users manual provides top level description of features
and functions included in the system, and some tutorial material to help new users. The reference manual documents the
internal mechanics and kernel words for advanced users and system programmers. More advanced features like 8088
assembler, multitasker, floating point packages, graphics, etc., are left for future volumes.

This paper discusses styles of presentation and problems in documenting systems of this magnitude.
F128, Experiments On An 128 Bit Forth
C. H. Ting
Offete Enterprises, Inc., San Mateo, CA
We are at the threshold of migrating from 16 bit Forth to 32 bit Forth. A few years later, we may have to consider
64 bit Forth. Is there an end? This paper anticipates that we will have to deal with even larger word width.

The 8088 family of CPU’s provides us a very convenient platform to explore Forth systems which will use 128 bit
words, if we insist on using the segment pointers to address memory. The memory is thus organised neatly in 16 byte pages
or 128 bit words. We shall consider various interesting consequences in building a Forth system in which data must be
represented in 128 bit chunks.

An 128 bit word can be used very effectively to store the following information:
« Executable code, up to 16 bytes or multiples of 16 byte pages
« Headers
« List of pointers to executable code (colon definitions)
» Data structures for integers, up to 16 bytes
« Data structures for floating point numbers, up to 16 bytes
o String data, multiples of 16 byte pages

Initial experimental results on hosting a Forth kernel on this type of architecture will be presented in this paper.
Several interesting ideas on implementing a Virtual Forth Machine will also be discussed.

A Self Hosted Embedded Microprocessor
Martin E. Fraeman
John R. Hayes
John Hopkins University/Applied Physic Laboratory
Lee W. Nearhoof
NASA Goddard Space Flight Censer

A prototype embedded coniputer based on the SC32 32 bit Forth microprocessor is being developed. It is electrically
identical toa potential flight computer and will be used to demonstrate the advantages of developing flight software directly
on target hardware. The prototype includes a magnetic bubble mass memory and provisions for power cycling to conserve
battery power. System software supports interactive program development and testing on the target flight computer as
well as traditional real-time control. The combination of a powerful target processor, mass storage, and suitable system
software will lower the costs of implementating computer based instrument control systems while increasing the flexibilty
of those instruments.



86 The Journal of Forth Application and Research Volume 6 Number 1

Stack Caching in the SC32 Forth Processor
John R. Hayes
Susan C. Lee
John Hopkins University/Applied Physics Laboratory
Support for Forth’s parameter and return stacks is critical in the design of a Forth processor. ‘We have implemented
two stack caches in the SC32 Forth processor. This paper reviews the stack caching algorithm used in the SC32 and the

programmer’s view of the stack cache. Performance measurements of the cache show that typically less than 1% of the
processor’s time is spent managing the cache.

Fast Double Unsigned Multiply and Divide
Wil Baden
339 Princeton Drive, Costa Mesa, CA 92626
These high level implementations of double unsigned multiply and divide are twice as fast because they do half the

work. They do half the work because they assume that the magnitude of the factors are such that the result will be valid.
Multiplication uses * and UM* once each to get three partial sums. Division is long division as taught in the forth grade.

Lean & Mean Single Pass Adaptive Data Compression
Wil Baden
339 Princeton Drive, Costa Mesa, CA 92626
The August 1988 issue of Commnunications of the A.C.M. had a paper, “Application of Splay Trees to Data
Compression,” by Douglas W. Jones, that may have important impact on data management. The paper gives an adaptive
method of data compression that is so fast, so simple, and uses so little storage, that it could be used in program I/O. Ttis
feasible for a program to keep data in compressed form, expand it, modify it, and compress it back again.
Co-routines
Wil Baden
339 Princeton Drive, Costa Mesa, CA 92626
Input and output of single bits are good applications for co-routines.

On each call of the co-routines we want to pack or unpack one bit. The overhead to determine which bit must be
fast, as this has to be done for each bit of every byte.

Zen and Forth
C. H Ting
Offete Enterprises, Inc., San Mateo, CA
This paper is based on the introduction to a GEnie Real-time Conference, October 26, 1988.

The historical developments of Forth are compared with that of Zen in China. There are striking similarities between
Forth and Zen in their struggles against mainstream doctrines and establishments. The central messages borne by them
are also very similar in stressing simplicity and personal freedom/understanding/involvement.

The question of the religious experience (enlightenment) of Forth programmers is also raised. Is this experience
required of a successful programmer? Is it a hindrance to the acceptance of Forth to the general computing public?

Forth is the right programming language because it is not a programming language. Rather, it is a tool that allows
the user to build a computer optimized for an application. The application is expressed in terms of a specialized instruction
set, built upon the Forth instruction set. Forth user is designing special computers to solve specific problems. Other
programmers are writing programs to cheat the computer. In most cases, the computer cheats back.

Design of a Data Base for Go Game
C. H Ting
Offete Enterprises, Inc., San Mateo, CA
Go game is one of the oldest and most complicated board games. It is still very popular in Japan and China. The

rules are rather simple. It is complicated becauuse of the large number of possible locations where stones can be placed.
Documenting the moves is a big headache, not to mention programming such a game.

One approach to computerize Go game is to consider it as a data base problem. If all possible moves can be stored
systematically ina data base, which allows easy and fast access, a large fraction of the problem in playing Go can be handled
automatically.

This paper describes a data basesystem using tree structures to store Go games efficiently. The traversing mechanism
can be used to build and extend the data base, and to retrieve data from the data base to guide actually playing.



* Abstracts of the Tenth Asilomar FORML Conference 87

The fundamental data unit in this system is a variable length record, which contains a list of stone locations and
linking information. The list can be extended at run-time if necessary. Each element in the list has a pointer pointing to a
sublist. The lists thus form a gigantic tree structure.

A tree can be traversed, searched, and extended by the following commands: LEFT, RIGHT, UP, and DOWN. These
commands allows a user to navigate through the tree structure to search for playable sequences if the structure already
exists. They can also be used in conipiling the tree structure. When the user reaches the end of a list, he can extend the
list with new data if necessary.

This tree structured data base will greatly facilitate the documentation of Go games. It reduces published game data
and playing sequences to a machine readable form. It will thus improve the intelligence of any Go game playing progran.

Trainable Neural Nets on a Novix Based Personal Forth Environment

John D. Carpenter
The performance of an advanced trainable neural net scheme will be demonstrafed on a stand alone Novix based
Personal Forth Environment. An attempt will be made to identify Forth words of general use in developing trainable
neural nets with fuzzy data handling. Feasibility for ongoing training of neural nets under real time conditions with the
Novix with projections to the Harris family of Forth engines will be studied.

An Improved Interpreter
Michael Perry
Why an improved interpreter? The goal is to provide more generality without adding much complexity or sacrificing
much efficiency. A little history is in order. The FIG-Forth interpreter, INTERPRET, was a single loop which processed a

chunk of source coming either from a disk block or console input. It was controlled by the system variable STATE, compiling
or interpreting as needed. It had the advantage of simplicity, and a few drawbacks.

ANS X3/J14 Public Field Trial for Locals and Globals

The ANS X3/J14 Committee is hard at work developing an ANSI Standard for the Forth computer language and
‘programming environnient. As a part of that work, the committee is currently evaluating implementation strategies for a
Local and Global variable extension word set. Attached are a related proposal and a comment. The proposal was
synthesized by members of the Technical SubCommittee of X3/J14 as a composite of the proposals before the committee,
taking account of “common practice” in this area. The comment, while not in the form of a proposal to the committee, is
also included as an example of an alternate approach with more usage and performance restrictions, but perhaps a simpler
syntax.

GOTO: A Proposal
C. H. Ting
Offete Enterprises, Inc., San Mateo, CA

There have been many proposals presented in previous FORML Conferences and recently to the ANS-Forth
Standards Committee. It is quite obvious that people hate the strait jackets of the classical control structures (D0-LOOP,
IF-ELSE-THEN, and BEGIN-UNTIL) which do not let them leave the structures conveniently.

Most of the new proposals develop various ways Lo exit loop structures, which tend to mess up the existing control
structure word set. They also tend to make the control structures more complicated and less useful,



