Abstracts of the
Eleventh Asilomar FORML Conference

November 24 — 26, 1989

Asilomar Conference Center
Pacific Grove, California

Forth Poetry or Forth Program?
Forth Coding Style and Naming Convention
C.H. Ting
San Mateo, CA

Compound names can be used to help documenting
Forth words in an easy and natural way, making Forth
programs easy to compose and to be understood. Rulesand
examples are given to illustrate this coding style.

A Trail of Bread Crumbs
Peter Midnight
San Leandro, CA

1 perceive a need to be able to SEE or VIEW any word [
may care to use. This capability is my favorite feature of
F83. The unfortunate side affect of some of the improve-
ments in F-PC is that many words are made available for
use through menu selections, function keys, and even
mouse action without any way for the user to SEE or VIEW
them because there is no practical way for him to find out
what words those are. 1 wish to present my work on this
problem.

Seeing Forth
Wil Baden
Costa Mesa, CA

Comparison of Forth with elementary C reveals essential
differences in the two languages.

Kernighan and Ritchie, The C Programming Language,
Second Edition, (henceforth called “the book”) has an
excellent tutorial introduction. It shows “the essential ele-
ments of the language in real programs, but without getting
bogged down in details, rules, and exceptions.” Translating
these programs into another language will not necessarily
show the virtues of the new language, but only how the new
language handles the tasks performed by the examples.
Translation into Forth is very instructive. I have used the
same algorithms and data structures unless “you wouldn’t
do it that way in Forth.” The Forth dialect used is that of
BASIS9 with whatever else is necessary. The names of the
functions have been given a Forth accent.

© 1990 Institute for Applied Forth Research, Inc.

From Pascal to Forth
Leonard Morgenstern
304 Rheem Blvd.,,

Moraga, CA 94556
GEnie: LMORGENSTERN

Fundamental differences in viewpoint between Pascal
and Forth are more important than certain obvious dis-
similarities in syntax. Pascal is conventional, with a mode of
thinking that derives from algebraic notation. Forth is “or-
ganic,” growing out of the processor and operating system,
and permits the stepwise development of complex
programming features.

Binary Radix Sort on
80286, 68010, and RTX2000
C. H. Ting
San Mateo, CA

Binary radix sort algorithm is implemented and com-
pared on three different processors: 80286, 68010, and
RTX 2000. It is very easy to implement and perform quite
well using specialized move instructions in the processors.

An Extensible Optimizer
for Compiling Forth
Andrew Scott

IDACOM Electronics Lid.
4211 - 95 St « Edmonton, AB
CANADA ToE 5R6

Forth implementations on some processors suffer
speed limitations.. One solution to this problem has
involved implementing a subroutine threaded system to
climinate inner interpreter overhead. Short primitives are
usually compiled as inline code. This paper describes a
method by which Forth can be compiled to produce more
optimized code by combining sequences of Forth words
into equivalent native instructions. The optimizer
described does not require Forth primitives to be “smart”
words nor does it require extensive changes to the normal
Forth outer interpreter. Also, the optimizer is extensible,

Journal of Forth Application and Research Volume 6, Number 2

185

186

The Journal of Forth Application and Research

Volume 6 Number 2

permitting new optimization rules to be added at compile
time.

Four Different Programmers, Forths,
and Computers

Guy M. Kelly

Kelly Enterprises
2507 Caminito La Paz
La Jolla, CA 90237

A group of four programmers attempt to create a new
program on four different personal computers, using four
different versions of Forth.

Multitasking or Multiple State Machines?
Guy M. Kelly
Kelly Enterprises
2507 Caminito La Paz
La Jolla, CA 90237

An approach to handling asynchronous inputs from the
keyboard, a mouse, and a serial port using multiple state
machines instead of a multitasker.

Graphics Based Smart Windows
Guy M. Kelly

Kelly Enterprises
2507 Caminito La Paz
La Jolla, CA 90237

A mouse-driven graphics-based windows package is
described. Each defined window contains information
about its class, job, current state, and associated mouse
pointer type. Facilities are included for creating radio,
toggle, momentary, and repeat buttons. A generalized re-
quester structure is also provided.

A State Machine Based Drawing Package
Guy M. Kelly

Kelly Enterprises
2507 Caminito La Paz
La Jolla, CA 90237

A monochrome drawing package has been written as
part of a communications program. The package uses state
machines to implement the various drawing functions. The
functions include dots and lines (with connected versions
of each), boxes, circles, ellipses, and polygons (with filled
versjons of each), cubic splines, text (horizontal and verti-
cal), and a variable sized eraser (which can be used as a
drawing tool when erasing is in the foreground color).

Communications and State Machines
Guy M. Kelly
Kelly Enterprises
2507 Caminito La Paz
La Jolla, CA 90237
A serial communications package was needed for in-

clusion, with a windowing and drawing package, in an inter-
active on-line graphics program. The program design

required either multitasking or the use of multiple state
machines.

The serial communications package produced for use in
the application uses a low-level serial interrupt service
routine (ISR) for raw serial input and high-level state
machines for serial i/o.

The serial input ISR stores incoming bytes in a circular
buffer for handling by a high-level serial input state
machine. The high-level serial input state machine reads
bytes from the low-level circular buffer and assembles them
into incoming communications packets and places the as-
sembled packets into an appropriate packet buffer for
processing by a packet handler.

The high-level serial output state machine takes outgo-
ing packets from a circular packet buffer and transmits
them a byte at a time. Both serial state machine handle
ACKing and NAKing and time-outs. The output routine is
also responsible for retries.

A 3-D Measurement System Using
Object-Oriented Forth
Kenneth B. Butterfield
Los Alamos, NM

Discussed is a system for storing 3-D measufements of
points that relates the coordinate system of the measure-
ment device to the global coordinate system. The program
described here uses object-oriented Forth to store the
measured points as sons of the measuring device location.
Conversion of local coordinates to absolute coordinates is
performed by passing messages to the point objects.
Modifications to the object-oriented Forth system are also
described.

User-Defined Systems for Pure Mathematics
John J. Wavrik
Department of Mathematics
University of California - San Diego
La Jolla, California

Some branches of mathematics require the ability to
represent unusual types of data and algorithms. Some of
the needs of workers in these areas can be met by providing
them tools to construct their own special purpose software
systems. Forth has properties that make it very useful for
this purpose. It is possible to build such systems from
reusable parts and to create abstract types like “polyno-
mial” and “matrix” which can, without writing new code, be
specialized to polynomials withvarious kinds of coefficients
and monomial parts, matrices with various kinds of entries,
etc. — and which can be combined to form compound
structures. This paper discusses an approach resulting in
systems which manipulate complex mathematical objects
using standard Forth syntax and semantics.

Abstracts of the Eleventh Asilomar FORML Conference

187

CRC Polynomials Made Plain
Wil Baden
Costa Mesa, CA

In data communications a cyclic redundancy code
(CRC) polynomial is often used as a method for error
detection. It is option in the popular XMODEM protocol
and is required by international communications standards.
Many programmers have heard of it and even implemented
it, but there are few who understand it.

Hierarchical Objects from Flat Vocabularies
Mike Elola
San Jose, CA

‘Without mentioning message-passing, the author discus-
ses how-many of its benefits can be obtained through the
use of vocabularies. These benefits are name overloading
and object-driven selection of the correct operation once
operator names have been overloaded.

Previously I have shown that the selection of operators
can be mediated by objects, ultimately through object
vocabularies (Forth Dimensions, Volume 10, Issue 5). Now,
extensions for search-order management are discussed that
would support a basic form of multiple inheritance.
Management of search-orders through hierarchical object
classes is normally a prerequisite. Rather than taking the
direct route to constructing these trees, special “search-tree
traversal” data structures are proposed to provide object-
driven search orders. With these search-tree traversal ob-
jects, hierarchies of objects exist only on an ad-hoc,
as-needed basis.

PAI Virtuoso —

Graphics Interface, Text Interpreter,
Memory Management, Relocatable Modules,
and Object Orientation Boost Productivity
Lloyd R: Prentice, President
Prentice Associates Incorporated
4 Maple Street, Suite 2
Quincy, MA 02169
(617) 773-2340

PAI Virtuoso™ is a graphics-oriented, Forth-based
-development environment for creation of highly interactive
consumer and educational software, and animated, interac-
tive, desk-top presentations. Virtuoso has contributed
more than 10-fold boost to productivity of major software
projects.

Programmable Controlled Processing
and Graphic System Based on FSY63 Forth
Zuoping Chen
G. Brockmueller
CH-8092 Zurich, Switzerland

The Programmable Controlled Processing And Graphic
System which is assembled on a printed board with 16 cmx

14 cm could be used to process the metal elements to any
figures of two dimensions. There are libraries of Chinese

and English alphabets in the Forth software. Small volume,
low price and multiple functions are the advantages of this
system.

Pattern Matching in Forth
Brad Rodriguez

T-Recursive Technology
55 McCaul Street, #14
Toronto, Ontario MST 2W7

The problem of matching ambiguous or partially
specified text patterns is a recurring one in computer
programming, -Specialized languages (SNOBOLA, Icon)
have been created to address this problems. This paper
describes a set of Forth extensions to match patterns in text
strings.

The syntax for patterns resembles that of SNOBOLA.
The representation of patterns as Forth words allows nest-
ing, recursion, and indirection. The problem of backirack-
ing through sub-patterns is specifically addressed. The code
has been designed to operate on binary data, allowing
patterns to be found in any one-dimensional arrays, and not
just in text strings.

This project is part of a larger string processing package
being written for the IBM PC. 8086 source code.for the
pattern matcher requires only nine screens.

Control Flow Words from Basis9
Wil Baden
Costa Mesa, CA
Warning: This extract is unofficial and subject to change.
It ain’t over till it’s over.

Languages that can define new functions and procedures
are extensible in a weak sense. Forth is extensibleinastrong
sense because it can define new syntax.

In Forth, discretely defined control flow words are as-
sociated with each other to implement the logic for flow of
control. What control flow words do must be made clear so
that they can be used as components of other words.

(FPC) Forth for the PC
- Tom Zimmer
Milpitas, California
F-PCisa greatly enhanced version of Forth derived from
the F83 model for the IBM PC, XT, or AT developed by
Tom Zimmer of Maxtor Corp. Many other people also
contributed to it, including Robert L. Smith, Charles Cur-

ley, and Jerry Modrow, but the major work was done by Tom
Zimmer.

F-PC s trying to achieve a number of conflicting goals.
It is intended to be a Forth system that provides all of the
following:

« Compatible to F83 and Forth-83 Standard
« Smooth interface to DOS, using sequencial files
« Fast compilation and execution

« Integrated text file editor for easy program
development

188

The Journal of Forth Application and Research

Volume 6 Number 2

« Many utilities and tools
« Room for very large application programs

Logic Stack
C. H. Ting
San Mateo, CA

A separated stack is used to store logic flags to control
the execution flow in Forth: Significant savings in stack
space can be realized because a flag occupies only one bit
on the logic stack. It also forces the separation of logic
operations from arithmetic operations and reduces the
dangers in mixing logic flags with ordinary numbers. Putting
different types of data on different stacks could make Forth
a strongly typed language.

A Cross-Assembler for a
Small Interactive Target
Robert L. Smith
Lockheed Missles and Space Co.
Palo Alto Research Lab.
Palo Alro, California

The cross-assembler described below ‘was conceived
while developing an application for a scientific rocket
payload using a small EPROM-based Forth system. In the
development phase, the target system is interactive, having
KEY and EMIT. The target does not have LOAD. Programs
may be downloaded from the host by sending each line of
a source block through a serial port to the target. One of
the problems in development of the code was the absence
of an assembler in the target. It was considered undesirable
to add a full assembler to the target because of the addi-
tional space requirements. The only other alternative
seemed fo be to do a meta-compilation and make new
EPROMSs whenever a change in the code routines was
required. Instead, an alternative approach was taken in
which a relatively small assembler (about one-tenth the
normal size) is used for the target, and the major part of the
assembler translation occurs in the host.

A Stack Machine Assembler
Glen B. Haydon
Box 429, Star Route 2
La Honda, CA 94020
Stack machines are the wave of the future. How does
Forth fit in to the overall picture of the new machines? It
would be a shame for the Forth community to get lost in
the trees and fail to see the forest.
CSU Forth
An Object-Oriented Forth Implementation
Ayman S. Abu-Mostafa
California State University
Office of the Chancellor
Object-oriented design concepts can be easily imple-
mented in Forth since the language permits the program-

mer to extend it by writing new defining words. We have
written a Forth interpreter, CSU Forth, which has the

object-oriented features built in. No modification or com-
promise of the standard Forth structures, conventions or
philosophy was necessary.

Object-oriented design amounts to three things in the
most part: Encapsulation, Message passing and In-
heritance. Encapsulation in CSU Forth is done using the
defining words : CLASS and ;CLASS which begin and end a
class definition. The new class becomes a defining word for
objects of that class. Objects thus created become message
destinations, i.e., they receive the next word in the input
stream as a message. The object CFA matches the message
to one of the methods defined in its class or to one of its
instance variables, and executes such method as a regular
Forth word. Inheritance is achieved by the word INHERIT
which is used within the : CLASS ;CLASS pair to establish any
number of parent classes. This saves having to rewrite
methods that are common between classes.

CSU Forth also implements information hiding and
assertions to help guarantee proper use and execution of
objects.

For Think Forthink Forth Ink
Rob Chapman
Edmonton, Alberta, Canada

One of the things that “Non-Forthies” like to gripe about
is that Forth is unreadable with all those mysterious stack
operations. The stack presents a learning cliff that some
wish not to ascend. Another common gripe is that some
words lack clear meaning. To present a solution to these
problems, I propose that some of Forth's words are
misspelled. In this short paper I propose a better spelling
for some of the common Forth words which should make
Forth code clearerand easier to follow. This paper is a forml
submission to the forthcoming Pooh-Forth standard.

Smart RAM
Rob Chapman
Edmonton, Alberta, Canada

RAM is normally thought of as a dumb slave entity used
by microprocessors. However, with increasing chip den-
sities and the simplicity of Forth hardware engines, the
concept of coupling the two onto one chip becomes
feasible. This is Smart RAM. Smart RAM is explored in this
paper with a specific application in mind; use the smart
RAM to incrementally and interactive breed a Forth
tailored to a microprocessor. Smart RAM will play the role
of an emulator.

Thermal Meter
An Application of Forth FSY63
Based on Microcomputer
/Zuoping Chen
G. Brockmuieller
CH-8092 Zurich, Switzerland
The cost for the heating system is directly proportional
to used caloriquantity. The reasonable charge for the cus-

tomer should be calculated on the basis of the used calori-
quantity. With this method by using the cheap MCUS (8-bit

Abstracts of the Eleventh Asilomar FORML Conference 189

microcomputer unit) to measure the caloriquantity of the
individual heating radiator is an economical and practical
method.

The Harris C Cross Compiler
Tom Hand

Harris Semiconductor
Melbourne, Florida 32802

This paper gives an introductory description of the fea-
tures that have been incorporated in the Harris C Cross
Compiler for the RTX family of 16-bit microcontrollers.

The RTX 2000 is a highly integrated, high performance
microcontroller that has been designed for embedded real-
time systems. The C Cross Compiler is for developers who
prefer the C programming language for implementation of
their applications.

The C compiler was designed to meet the proposed
ANSI Standard for the C Programming Language. It has a
state-of-the-art menu/window interface that utilizes a con-
text-sensitive help facility.

Adding Compiler Security to METHODS >
Ulrich Hoffman
DELTA t GmbH
Uhlenhorster Weg 3,
D-2000 Hamburg 76, FRGermany
This paper describes a simple—to-implement compiler
security technique for the even simpler METHODS> con-
cepts, a one-screen object oriented extension to Forth.

Cool - Unifying Class and Prototype
Inheritance
Antero Taivalsaari
University of Jyviskyli
Ruovedenkatu 13 D 54
SF-33720 Tampere
Finland
tsaari@tukkijyufi (128.214.7.5) taival-
saari@jylk jyu.fi (128.214.7.1)

Cool (Coherent object-oricnted language) is a new
Forth-based object-oriented programming language that
unifies two models of inheritance — class inheritance and
prototype inheritance (delegation) — to a coherent model
ina newway. Cool proves that it is possible to combine class
and prototype inheritance without having to lose any major
advantages of class inheritance. Cool features clear object
structure, data abstraction and possibility for type checking.
Yet, from the user’s point of view, there is only one kind of
object without separate class and instance hierarchies as in
most object-oriented languages. Therefore, each object in
Cool can function both as a class and an instance.

