The Cost of User-Friendly Programming:
Maclmage as Example

Ferren Maclntyre
Kenneth W. Estep*
John McN. Sieburth

Graduate School of Oceanography,
University of Rhode Island, Narragansett, RI 02881-1197

Abstract

The Xerox Star and Apple Macintosh computers introduced the concept of the “user
interface” to personal-computer software. The user interface is an intuitive, easy-to-use environ-
ment through which the user directs operation of the computer. It simplifies program learning and
use, but at the cost of increased code and a limitation of programming options. As an example of
this cost, we describe MacImage for the Macintosh, an image-analysis application. The actual code
needed to implement a basic Macintosh interface is given for a simpler application called Simple
Tones. The user interface occupies 47% and 60%, respectively, of the Forth code for MacImage
and Simple Tones, but results in software that can be used almost immediately, without consulting
a manual.

A second, less exploited, but ultimately more important aspect of user friendliness is that both
the programmer and user should recognize that the user will need to optimize code for his
application, and the program must be designed with this eventuality in mind.

The motivation for the work described here was user dissatisfaction with the software
accompanying a commercial product, the Artek 810V ™ Image Analysis System, shown in Fig.1.
While the $35,000 hardware has much to recommend it, the software, as delivered, was slow,
incomplete, and user hostile, in the sense that operations by the user, other than those anticipated
by the programmer, resulted in program abort with loss of data. Since the logic of the menu
structure never became apparent to the user, such procedural errors were annoyingly frequent.

In cooperation with the manufacturer, we undertook to produce software written from the
user’s point of view. We had a free hand to refine the software until all annoyances were removed,
but there were over-riding constraints on our work, the mostimportant being that we were limited
to the data generated by the Artek firmware, shown in Fig. 2A, (although we anticipated at that
time that Artek would change their proprietary code to produce the data shown in Fig. 2B, as
discussed below).

The range of images that can be analyzed by a given machine is probably greater than any
single program can encompass. MacImage is a silhouette analyzer, providing shape and size
information for objects of sufficient contrast to be discriminated from the background, provided
only that there are not more than 3 perforations in a silhouette which produce gaps in a given
raster line (this is a limitation in the Artek 810 firmware). We use MacImage to analyze objects

1 Present address: Havforskningsinstituttet, Nordnesparken 2, N-5024 Bergen, Norway -
© 1990 Institute for Applied Forth Research, Inc.

Journal of Forth Application and Research Volume 6, Number 2

103

104 "The Journal of Forth Application and Research Volume 6 Number 2

ranging from the microscopic latex calibration spheres of Fig. 7, to the complex 3-mm fish larvae
of Fig. 8 (Estep, et al. 1986). '

Video
Camera

Image
Monitor

Light Pen

Artek 810 Image
Analysis Computer

Figure.1 The Artek system with a Macintosh front end. The image monitor displays a binary, digitized image derived
from a standard television signal from the video camera. Hardware controls govern such parameters as aperture size
and thresholding level on the Artek. Communication consists of control signals to the Artek and raw data to the
Macintosh, over an RS-232 link.

Approaching image analysis, we expected it to be highly mathematical. To our surprise, the
most striking feature of the MacImage code is shown in Fig. 3, which analyzes the distribution
of Forth code blocks by function. Arithmetic blocks, which actually perform numerical opera-
tions upon the data, represent 9% of the code, with the rest devoted to overhead, I/O, and
interface. It might be thought that the Artek was doing arithmetic for us, thus making our
user-interface-code percentage unrealistically high. However, for our second image-analysis
system (Forth and Macintosh based), in which we do the arithmetic ourselves, mostly in a slaved
IBM clone, we found the ratio of image-processing-code to user-interface-code (by either lines
or memory locations) to have changed only from the 1:11 found for Maclmage to 1:8, thus
supporting the folk belief that 10% of the code does 90% of the work.

Horizontal Feret ' Horizontal Feret

Perimeter —._ Perimeter m—..]

Vertical
Feret

Vertical
Feret

Longest
Horizontal
Chord

Area

< Y/
Longest Chord A Object Chords

Figure 2. Arbitrary silhouette representing typical object of image analysis. Basic measurements from the Artek 810
image analysis computer (A) as they are currently calculated and (B) as suggested by the authors. “Feret” (with a
silent “t”) refers to the diameter measured between parallel tangents, as first used by the French cement chemist,
L.R. Feret (1931). ’

The Cost of User-Friendly Programming: MacImage as Example 105

Functional Distribution of MacImage Code

Arithmetic

Artek « Macintosh
§ Housekeeping

Macimage < Excel Legend
Forth Extensions
Constants & Variables D Overhead
Menus
Disk /O
Files
Graphics

Editing Files User Interface

Dialog Printing 810 Interface

Histogram . Math

Windows

Figure 3. Functional distribution of the MacImage code. Note the predominance of the code necessary for the user
interface, and the small amount of arithmetic code.

Almost all operations are in 32-bit integer arithmetic, but we still found it necessary to load
25 blocks of software floating-point code to calculate one crucial parameter, the number of
objects per unit volume of sample. This number has three components, each of which is
comfortably within the range of scaled integers, but which together are not. It is composed of
the number of objects per microscope field (0.1 t010,000), times the number of fields per sample
(1 t010,000), divided by the sample volume (0.01 t010,000), with a combined dynamic range of
1015, When we considered devising an automatic scaling algorithm to cope with the possible
inputs, we found that we were re-inventing floating point. (So ingrained seems resistance to
floating point in parts of the Forth community that we were repeatedly told that we should have
been able to scale the numbers. Still, none of the advocates of scaling has published a
demonstration that this can be done for numbers which may vary by many orders of magnitude,
or shown how the results would differ from floating point. In our hands, at least, scaling works
when, and only when, the range is a priori knowledge. With the spread of hardware floating-
point processors, we anticipate that even Forth users will come to accept what scientists and
pocket-calculator users have long understood: floating point is useful.)

The small proportion of “Forth extensions” is a tribute to the completeness of Creative
Solutions’ (Rockville, MD) MacForth Level I1I™. The added words are mostly analogs of words
from MMSFORTH™ (Miller, 1979-88). Words such as $>NUMBER, to convert strings to numbers,
appeared in a MacForth update while we were writing code, and proved invaluable in dealing
with communications between our component machines.

The components of user friendliness

- The largest category of programming code, 47%, is the one we call the “user interface”,
devoted to making the program work properly in the Macintosh environment. Such user
friendliness as we have achieved results from the interaction of several components, chief of
which appear those shown in Table 1:

106 The Journal of Forth Application and Research Volume 6 Number 2

Category Examples

Good programming “Bombproofing”, logical design
Macintosh features MacDraw, Excel, user interface
Machine technology Processor speed, bus width, memory size

Table 1. Components of user friendliness

It is difficult to apportion credit for user friendliness among these components, but certainly
good programming is a sine qua non without which nothing useful can be accomplished. For
instance, some of the speed increase seen in Fig. 4 can be attributed to the Macintosh’s 68000
CPU, but more comes from attention to optimizing data transfer between the Artek and
MacImage, and from calculating the right numbers at the right time and storing them efficiently.
Some comes from making use of the menu structure of the Macintosh, but more from a pragmatic
layout of menu items,

User friendliness has a special meaning in Macintosh software. One of the things that makes
the Macintosh a unique computer is the extensive ROM routines that were developed by Apple
Computer to standardize the operation of diverse software packages. All Macintosh programs
include icons and standard operating procedures. Underlying these standard features are the
programs in ROM, for example, there is a “Menu Manager” that creates and controls standard
“pull-down” menus for program commands and control, a “Window Manager” that creates
windows that operate in the standard Macintosh fashion, a “Dialog Manager” that creates and
controls “dialog boxes” (a special window type), and a “File Manager” that produces standard
dialog boxes for opening, closing and saving files.

Use of these ROM routines by all Macintosh software creates a set of expectations on the
part of the user about how the machine will perform in response to a given action from the
keyboard or mouse, and Macintosh magazines, such as MacUser, include a category “Follows
Mac Interface” in their review sections, along with “Ease of User”, “Performance”, “Documen-

Time Required to Process Data File of 537 Objects

Plot area histogram [

Macintosh
IBM-PC

Apple I

Calculate stats on object file

Analyze and store objects.to disk |

Print complete data file

0 100 200 3000 400 500

Figure 4. Program performance comparison of the MacImage program to programs for control of the Artek 810
image analyzer written for the Apple Il and IBM-PC.

The Cost of User-Friendly Programming: MacImage as Example 107

Pull-Down Menus

Active Window
Close Box /\ i Drag Bar
i |
[|#% File Edit Search Character Paragriph Document]
N Jfarfent —=———>—
¥

= ["User Fricndliness" has a special meaning in Macintosh software. One

of the things that makes the Macintosh a unique computer is the extensive

ROM routines that were developed by Apple Computer to standardize the’ S;m"
ar
operation of diverse software packages. For example, there is a "Menu
manager” that creates and controls standard "pull-down” menus for program
age 4
References
Window
Bibliography Size

Aaronson, §.-1973. Particle aggregation and phag 25108 AM

Oesromongs, Arch Mikrobfol 92:30-44 .

Andaorcan B A 1081 THbractenictnra of tha flamal

Inactive Windows

Figure 5. A screen image from the Microsoft Word word processing program showing standard Macintosh user
interface components.

tation”, etc. As one example of these user expectations, we have included a screen image from
Microsoft Word, the word processor used to write this manuscript (Fig. 5). There are 3 windows
present in this screen image, two are word-processing documents and the other is the alarm clock
“desk accessory”. The scroll bars, window-size box, close box and drag bar are standard features
that all Macintosh programs include. Thus when one learns how to use these screen areas in one
program, one expects them to work exactly the same in other programs.

For users of the Macintosh, these standardized features make work much easier, and in fact,
most new software packages can be learned by trial and error. For the programmer however, the
ROM user-interface routines can be a two-edged sword. Much effort must be expended in
interacting with these routines, and some programmers complain about having to “do it Apple’s
way.” The result of this effort, however, is an easily learned program, and at a cost of less code
than would be required to create the same effects from scratch.

Macintosh-specific user-interface code

Because the 207 blocks of MacImage code are too long to include here, we have written a
program called “Simple Tones” that illustrates the cost of a Macintosh user interface and also
provides a useful model for anyone new to Macintosh programming at this level. The underlying
language, MacForth K2.4, is described as Forth-79 compatible (our preferred version), with many
additions to deal with the Macintosh, such as TONE to run the speaker, and words to generate
windows, controls, and menus, exemplified by W.BOUNDS , C. TYPE , and DRAW.MENU . BAR respec-
tively. Simple Tones generates a low and high tone through the speaker in the Macintosh. In

108 The Journal of Forth Application and Research Volume 6 Number 2

K3 1ones
Tone Window T

Quit

Simple Tones

5 Long Tones

[Loud Tones

High Tone

B4 Triple Tones

Figure 6. A screen image of the Simple Tones program, showing its single window with control push buttons
and check boxes. A single menu is pulled down, with “Quit” selected.

addition, it allows control over the volume and duration of the tones generated, and also allows
three tones to be gencrated consecutively. Blocks 1 and 2 of the program shown in Listing 1
contain the words necessary to store tone parameters and to generate the tones.

Using the words in these two blocks, tones can be gencrated from the Forth command
window. The program could not be used, however, without consulting the source code, or an
accompanying manual.

Figure 6 illustrates the appearance of the Macintosh screen after Simple Tones has been
modified to include a Macintosh-type user interface. Two “push buttons” on the left side of the
single window generate the tones when the mouse is used to position the cursor over them, and
the mouse button is pressed. Control over the duration, volume and triple tone function is
achieved by the the “check boxes” on the right side of the screen. The Simple Tones window has
a close box in the upper left and a size box in the lower right, allowing the window to be resized,
moved around the screen, and closed with the mouse. Finally, a menu has been added that allows
the tone window to be redisplayed if it is closed, and to allow an exit from the program. Blocks
3-8 in Listing 2 control all functions related to the controls, window and menu. The CASE
statement in Block 6 is a version of Eaker’s, executing the words between OF and ENDOF for a
match between the control value and the word preceeding @ ...The “|” and unarrowed “--”
symbols appearing in stack comments are not logical ORs and em dashes, but MacForth
conventions for separating descriptive comments, and “before” and “after” stack pictures,
respectively.

The code responsible for the user interface of Simple Tones represents more than 60% of

the complete program. The result of this additional expenditure of code is a program that can be
run immediately by anyone familiar with the rudiments of the Macintosh interface.

The Cost of User-Friendly Programming: MacImage as Example

109

—Histogram Parameters:

Bin Width {1-999 pixels}
Number of Bins {30-70}
Minimum Ualue Plotted

I Plot using default settings
[] Plot using scaled values

—Plot Type:

o]

@® Standard Plot
) Percent Plot

—Plot Title:

I.?ﬁSpheres |
—Bar Pattern: ____Text Font: _

() Black ® New York

O Dark Gray) Geneva

@ Gray) Monaco

) White

94

dlilg Select 12:0? P™M
5 ®
, ﬁﬁ:s‘; Seﬁj 1.765pheres #0bjects 300
Formats... #F fin Halue »
Max Uglue 129
Patterns... Min Shown 75
s'aue as Text Max Shown 129
N Hle Stats T Bin Width 1
u Prnt Bins Used 56
m Exit Plots #Truncated 0
b
e 10
r

99
Area (Pixels)

Figure 7. Components of the MacImage user interface. Two dialog boxes that control appearance of the histogram
appear at the top of the figure. The bottom of the figure is a screen image of the histogram portion of the MacImage

program with the “Plot” menu pulled down.

User interface in Maclmage

Figure 7 displays several features from the user interface of the MacImage program. The
histogram at the bottom is a calibration run on 1.76-um latex spheres at maximum resolution.
Overlying a portion of the histogram is a pull-down menu with “Print” selected, this being the
only operation necessary to produce hard copy. The “Open...” option in the menu appears in
gray rather than black type. This graying out of menu items, another aspect of the Macintosh

110 The Journal of Forth Application and Research Volume 6 Number 2

% Edit File Patterns Functions 12:53 PM

' The Artek 810 is not responding! Please
|E check the power switches, cable

connections, etc.

Figure 8. A screen image of the Image Transfer section of the program, illustrating another aspect of the user
interface, a dialog box that informs the user that the Artek is not responding to commands from the Macintosh.

user interface, indicates program commands that cannot be selected from this point in the
program. Selecting “Formats...” or “Patterns...” from the menu causes dialog boxes to be
displayed on the screen. Dialog boxes are a special type of window that disables all events, such
as mouse downs in the menu bar, until the dialog box has been responded to. If “Patterns...” is
~ selected, the upper right dialog box appears, allowing one to specify title, shading, and fonts. By
Macintosh convention, the black areas are active: information from the keyboard will appear in
“plot title” at this point. If “Formats...” is selected, the dialog box at the upper left of the figure
is displayed on the screen.

Histogram programs supplied by Artek for the Apple Il and IBM PC prompted the user for
“bin width” and “number of bins” before defining its terms or displaying any information about
the data set, so that one was working blind. They displayed no numerical information along the
axes, and had no provision for dealing with the inevitable artifacts introduced by re-binning of
digitized data. Finally, when one redid an existing histogram, the old values selected for these
parameters were lost. We addressed each of these problems, and consider the information and |
control shown to be the minimum necessaty for constructive use. MacImage automatically does
jts best to produce an acceptable histogram; only if this attempt fails does the user intervene with
new parameters. When a new histogram is attempted, the user has reference to the values from
the last histogram in the “Histogram Parameters” section of the dialog box in Fig. 7. If the user
strays too far from usable parameters, an “X” in the “Plot using default settings” checkbox returns
the parameter boxes to the defauit values.

Figure 8 displays the results of an attempt to transmit stored data back to the Artek, with
the Artek unconnected. In the commercial program, such an attempt resulted in an abort: here,
another type of dialog window appears with the characteristic Macintosh error-message display.

As we saw in the previous section, much of the programming of the “user-interface” blocks
is devoted to the mundane tasks of defining screen areas which will respond to the presence of

7/

The Cost of User-Friendly Programming: MacImage as Example 111

the cursor and a mouse click, and to storing the resulting keyboard entries. It is neither exciting
nor challenging, merely time-consuming and necessary if one wants to produce a usable program.
As we have shown in the Simple Tones program, and the more involved MacImage program,
meaningful user interfaces can be constructed only at the cost of considerable effort. If they are
a part of a coherent and standardized environment, however, they result in programs that are
much easier to learn and use. The appearance of numerous Macintosh-like environments, such
as the Atari 1040ST, Amiga, and the GEM desktop for the IBM-PC demonstrates the usefulness
and-popularity of the user interface concept.

User-modifiable Code

The second cost of user-friendliness is a willingness on the part of programmer and user to
plan for modifications by the user. Except in the most routine applications, there will always be
situations unanticipated by the programmer in which the user can, by making small changes,
optimize the operation of a machine. This philosophy is somewhat counter to current practice,
which appears to favor sealed-package programs that attempt to be all things to all users. This
approach perhaps arose partly from the natural desire of vendors to profit from proprietary
programming, and we have no objection to this as long as it does not preclude user improvement.
A logical place for proprietary code is in highly optimized drivers and similar low-level program-
ming. The other source of concealed programming may be the historical difficulty of writing and
implementing user-added code with grace and efficiency, which made sense only so long as
efficient code had to be written in assembler, and easily written code in one of those FORTRAN-
or BASIC-like languages which Lewis (1979) described as having the same relation to computer
language “as sign language has to English” Fortunately, such artificial constraints are obsolete,
and it is increasingly possible to design for user optimization of programs.

Unfortunately for this philosophy, we were not making the decisions for Artek, who chose
to keep the code we had written for them proprietary, and therefore unmodifiable by the user.
For our second, state-of-the-art image-analysis system, whose marketing strategy is under our
own control, we have a policy of open source code, thereby giving the user complete access to
everything we know about the internals of the machine, and complete ability to modify or extend
its capabilities.

A case in point is the choice of parameters in Fig. 2. Artek’s set (2A) was chosen by a
mathematician, who tested his algorithms on smooth convex shapes very much larger than a pixel.
Yet because of digitization errors (and an apparent error in a square-root algorithm) we found
perimeter untrustworthy for our measurements, and the chord selection in 2A was demonstrably
less useful than 2B for our needs. But the 810 was not designed to permit such radical changes,
and we were left with discarding perimeter and working our way around the inferior choice of
chords.

In our research environment, we create one-of-a-kind instruments, whose operational and
data-reduction code can be rewritten and tested in a matter of minutes. When it proves erroneous,
or hostile, or simply clumsy, we fix it. The “secrets” lie in putting firmware in electrically-erasable
programmable read-only: memory (EEPROM) with provisions for immediate in situ re-
programming, providing a SCSI port (Small-Computer Standard Interface), as on the Macintosh
Plus, and—most important, in writing in a language which is efficient, flexible, and simple—a
need exactly filled by Forth. Rockwell’s Forth-speaking R65F11/12 is often an adequate basis on
which 10 build such systems.

So important is this “reprogrammable” level of user friendliness that we will no longer
purchase a commercial instrument unless it offers an easy way to rewrite its program for our
particular needs.

112 The Journal of Forth Application and Research Volume 6 Number 2

As a concrete example of making the user responsible for understanding what his machine
is doing, we deliberately omitted some key functions from the core MacImage program. Artek
hoped that we would provide software equivalents of buttons labelled “Length”, “Width”, and
“Volume”, which would extract these functions from silhouettes of arbitrary shape. But we have
watched too many graduate students present computer-processed data as factual simply because
they had been processed by a standard library package, while the student had no concept of the
accuracy, significance, or appropriateness of the processing. We deliberately chose not to
encourage such blind faith in software, and instead offered instead an easy way to move sample
data from MacImage to the spreadsheet Excel™, where the user may process them as desired.

We thus unsubtly compel user attention because there are many ways of converting from
two-dimensional data to three, and all of them require assumptions. The assumptions behind the
original Artek program produced demonstrably erroneous results for our objects; the assump-
tions behind similar operations in other image analyzers seemed equally implausible to us, so we
wrote our own to work on our samples. Implementing such assumptions is a matter of a minute’s
coding in Excel, requiring nothing more than typing in one equation and manipulating a few of
the standard Macintosh user-interface features described above. (This is aided by Excel’s rela-
tively complete set of mathematical functions.) We felt surface area to be an important parameter
of marine microorganisms (since, to a first approximation, all chemical reactions occur at
surfaces), so we added an ability to estimate the surface area. We have published our chosen
data-reduction equations (Estep et al.), but-we do not force them upon the unwary.

Attributions and Acknowledgments

Estep wrote the bulk of the MacImage program as part of his PhD thesis for and supported
by Sieburth’s marine microbiological laboratory under NSF grant OCE-85-11365, consulting
MacIntyre as necessary on Forth and the numerical treatment of data. Artek provided a 10-Mb
“Hyperdrive” hard-disk for Estep’s Macintosh and a Macintosh with a Hyperdrive and Image-
Writer printer for program development. Robert Goldstein, Artek’s programmer, provided
information on the inner workings of the Artek 810.

We acknowledge superb telephone support from Creative Solutions, and the assistance of
numerous MacForth programmers on Compuserve, including Dave Sibley, Ward MacFarland,
and Dave and Don Colburn, without which we might never have gotten the program working,

References

Estep, K.W,, E. MacIntyre, E. Hjrleifsson and J.McN. Sieburth (1986). “MacImage: A Portable,
Moderate-cost Image Analysis System for the Rapid and Accurate Mensuration of Marine
Organisms.” Mar. Ecol. Prog. Ser.

Feret, L.R. (1931). “Particle size of pulverulent materials.” New Intern. Assoc. Testing Materials,
Sept. 9 pp,

Lewis, T.G., (1979) “Some Laws of Personal Computing.” BYTE 4:186-191.
Miller, A.R. (1979-88) MMSFORTH Users’ Manual. (Natick, MA 01760-2099).

John Sieburth is professor of microbiology at GSO. Ferren Mclntyre left his Research Professor-
ship at GSO to found A/S Pixelwerks, Ltd. with Kenneth Estep after a grant proposal was rejected
because, “the author has no experience with image analysis.” To his chagrin, he finds that he is still
living off of the same granting agencies, but at least other people have to write their proposals.

The Cost of User-Friendly Programming: MacImage as Example 113

Listing 1. The working code for Simple Tones.

Block 1: .
(Simple tones - sound generation words) (951086 KWE)
160 CONSTANT LOUD \ Constant for Toud tone
30 CONSTANT SOFT \ Constant for soft tone
3 CONSTANT SHORT \ Constant for short tone
19 CONSTANT LONG \ Constant for long tone

CREATE ~VOLUME SOFT , \ Variahle for tone velume
CREATE ~DURATION SHORT , \ Variable for tone duration
CREATE ~3TONES? @& , \ Flag for triple tone generation
\ Sound generation words

: DELAY 10006 @ DO LOOP ;

LTONE ~DURATION @ “~VOLUME @ 3088 TONE
HTONE ~DURATION @ ~VOLUME @ 5080 TONE

3LTONE LTONE DELAY LTONE DELAY LTONE ;
3HTONE HTONE DELAY HTONE DELAY HTONE ;

-
Block 2:
(Simple tones - sound generation words, con't) (951086 KWE)

: CHANGE.VOLUME (— | toggle tone volume between Toud and soft)
~“YOLUME @ LOUD = IF SOFT ELSE LOUD THEN ~VOLUME !

+ CHANGE.DURATION (- | toggle tone length between Toud and soft)
~DURATION @ LONG = IF SHORT ELSE LONG THEN ~DURATION ! ;

: CHANGE.TRIPLE.TONE (— | toggle triple tone function)
~3TONES? DUP @ NOT SWAP ! ;

: DO.LTONE (- | generate the low tone)
~3TONES? @ IF 3LTONE ELSE LTONE THEN ;
: DO.HTONE (~ | generate the high tone)

~3TONES? @ IF 3HTONE ELSE HTONE THEN ;

—->

114 The Journal of Forth Application and Research Volume 6 Number 2

Listing 2. The interface code for Simple Tones

Block 3:
(Simple tones - Window definition) (951086 KWE)
NEW.WINDOW TONE.WINDOW

190 100 246 375 TONE.WINDOW W.BOUNDS \ Set window size

" Simple Tones" TONE.WINDOW W.TITLE \ Set window title

SIZE.BOX CLOSE.BOX + TONE.WINDOW W.ATTRIBUTES
\ Add a close box and a window size box

TONE .WINDOW ADD.WINDOW \ Add window pointer to window Tist
—>
Block 4: ‘
(SimpTle tones - Tone window push buttons) (951086 KWE)
NEW.CONTROL LTONE.BUT \ low tone push button control definition
A.PUSH.BUTTON LTONE.BUT C.TYPE \ control type
" Low Tone " LTONE.BUT C.TITLE \ control title
14 36 LTONE.BUT C.POSITION \ control Tocation
TONE.WINDOW LTONE.BUT APPEND.CONTROL \ window pointer

NEW.CONTROL HTONE.BUT \ high tone push button control definition
A.PUSH.BUTTON HTONE.BUT C.TYPE

" High Tone" HTONE.BUT C.TITLE
14 77 HTONE.BUT C.POSITION
TONE.WINDOW HTONE.BUT APPEND.CONTROL >
Block 5:
(Simple Tones - Tone window check boxes) (951086 KWE)
NEW.CONTROL LOUD.TONE \ Tone volume check box definition
A.CHECK.BOX LOUD.TONE C.TYPE :
" Loud Tones" LOUD.TONE C.TITLE
154 62 LOUD.TONE C.POSITION
TONE.WINDOW LOUD.TONE APPEND.CONTROL
NEW.CONTROL LONG.TONE \ Tone duration check box definition
A.CHECK.BOX LONG.TONE C.TYPE
" Long Tones" LONG.TONE C.TITLE
154 31 LONG.TONE C.POSITION
TONE .WINDOW LONG.TONE APPEND.CONTROL
NEW.CONTROL TRIPLE.TONE \ Triple tone check box definition
A.CHECK.BOX TRIPLE.TONE C.TYPE
" Triple Tones" TRIPLE.TONE C.TITLE
154 92 TRIPLE.TONE C.POSITION
TONE.WINDOW TRIPLE.TONE APPEND.CONTROL -
Block 6:
(Simple Tones - control handling) (951086 KWE)
¢ DO.TONECTRLS (ctrl value — | do function based on ctrl value)
CASE LTONE.BUT @ OF DO.LTONE ENDOF
HTONE.BUT @ OF DO.HTONE ENDOF
TRIPLE.TONE @ OF CHANGE.TRIPLE.TONE ENDOF
LOUD.TONE @ OF CHANGE.VOLUME ENDOF
@ OF CHANGE.DURATION ENDOF

LONG. TONE
ENDCASE ; ‘
¢ CTRL.SELECTED

LAST.CONTROL DUP TOGGLE.CONTROL DO.TONECTRLS

—>

The Cost of User-Friendly Programming: MacImage as Example

115

Block 7:
(Simple Tones - control handling, con't) (951086 KWE)

: DO.TONE.CONTROLS (— | main execution word for controls)
IN.CONTROL? \ Is mouse down in control region?
IF FOLLOW.MOUSE \ Was mouse up in control region?
IF CTRL.SELECTED THEN
THEN

TONE.PROGRAM (flag — | program for tone.window)
IF BEGIN DO.EVENTS MOUSE.DOWN = \ check for mouse button pushes
IF DO.TONE.CONTROLS THEN AGAIN THEN

TONE .WINDOW ON.ACTIVATE TONE.PROGRAM
\ Assigns TONE.PROGRAM as program to be run when
\ TONE.WINDOW is activated

-
Block 8:
(Tone menu definition) (951086 KWE)
99 CONSTANT TON.MENU \ Constant for tone menu
s TONE.MENU (—-)

TON.MENU DELETE.MENU @ \ Delete menu if it exists

" Tones" TON.MENU NEW.MENU \ Menu title

" Tone Window/T;Quit/Q" \ Menu item definition

TON.MENU APPEND.ITEMS DRAW.MENU.BAR \ Add items to menu list
TON.MENU MENU.SELECTION: @ HILITE.MENU \ Make menu

CASE 1 OF TONE.WINDOW CHOSEN ENDOF \ Make tone.window active

2 OF BYE ENDOF \ Exit forth
ENDCASE

TONE .MENU \ Add the menu to the screen

