Emulation of a Stripchart Recorder
with the Split Screen and Smooth Scrolling
Capabilities of the VGA

David MacGibbon

Transonic Systems, Inc.
34 Dutch Mill Road
Ithaca, NY 14580

Introduction

We produce a medical flowmeter equipped with a RS§232 computer interface. The interface
board was completely described in last year’s proceedings [Mac90], but it’s basic function is to
digitize a medium speed analog signal (100 samples per second) and to transmit the data to the
computer for storage and display. We soon found that even our moderate data acquisition rate
was enough to severely burden conventional computer display techniques. We tried a plot and
clear screen type of display, but users complained that it was hard to follow and that important
events at the edge of the screen were immediately erased. We also explored the technique in
which an erasing cursor moves actoss the screen just in front of the drawing cursor. Our company
critics felt that this was an improvement but that viewing this display was still fatiguing because
of the constant eye movement required. At this point, our chief critic challenged us to produce a
smooth scrolling stripchatt type display without any hardware. It was also requested that half of
the screen be available for usc as a help menu. '

After a couple of weeks of vehemently insisting that these requirements could not be met
with software alone I discovered an excellent article discussing the smooth scrolling capabilities
of the EGA and VGA [Wil88]. The article also describes the screen splitting potential of the
VGA. With this additional information, we were able to build a software package that converts
any VGA equipped petsonal computer into a smooth scrolling split-screen stripchart emulator.

The source code listed was written for Tom Zimmer's FPC3 [Zim90] dialect of FORTH and
has several components that are specific for a VGA equipped IBM clone. The program described
will provide for stripchart playback of a recorded disk file at 100 samples per second. It can easily

be adapted for multichannel, multicolor operation and for data streams from sources other than
disk. : ‘

The Timer

The first item necessary to make an accurate stripchart emulator is a precision timer. If we
don’t have an external hardware timet, then we must do the best we can with components already
in the IBM PC. The first segment of the source code describes the reprogramming of the IBM
clone’s 8253 counter-timer chip to generate a timer tick at 100 samples per second. Please note
that the method used does disable the normal DOS timer functions. You may wish to refer to
references [Dun86] and [Dun88] for more sophisticated ways to accomplish this, chaining to the
normal DOS timer interrupt vector on every 5th time tick would provide approximately correct
DOS timing functions.

Journal of Forth Applications and Research Volume 6, Number 4
319

320 The Journal of Forth Applications and Research Volume 6 Number 4

Drawing on a moving target

We are going to rearrange the way the screen maps to the video memory slightly. Figure 1
shows the normal relationship of screen to memoty. We are going to change this relationship to
that shown in figure 2, where the screen is split into two window that are mapped separately.
Note that the video memory from 6000H to AFFFH isn't initially in use. To avoid rewriting the
entire video tmap when we display the next data point, we will put the new data in the unused
memory and readjust the graphics controller registers that determine which memory is displayed
in the top window. The net effect of this approach is that the memory map for the top window
slides down as the data pans across the scteen. This is shown in figure 3, where the beginning
corner of the top window memory map slides down from AFFFH to 6000H.

Screen Memory Map
Corner FFFFH

C800H

Figure 1
Screen Memory HMap
Corner FFFFH
AFFFH
6000H

Figure 2.

Emulation of a Stripchart Recorder 321

Screen Memory Map

6000H

0

Figure 3.

Unfortunately, the graphics BIOS routines in ROM were not designed to function propetly
on a moving target. The next segment of source code contains our replacement for the BIOS pixel
writing routine and words to draw a line. Our first requirement is for a routine to set the
appropriate pixels of the moving memory map. This is accomplished by the routine (VSET), an
adaptation of routines described in reference [Wil87]. Once pixel setting worked properly, the
line drawing routines [Smi90] provided with FPC were easily adapted to draw lines on the moving
screen.

Panning the screen

The third section of source code contains words to manipulate the graphics registers.
Initially, we must set the crt controller registers so that the screen is split into two separate
windows with the word SPLITLINEI. Next we disable scrolling on the bottom menu window
with the word ENABLEHALFSCROLL. k

Once this is accomplished we can reposition the top window anywhete in the memory map
with the words CORNER_BIT! and CORNER_BYTE |. CORNER_BYTE! sets the memory map
byte that corresponds to the top left corner of the screen. Fot precision placement the word
CORNER_BIT! may be used to set the bit within the chosen corner byte. - The word
SMOOTH . SCROLL uses these two words together to move the top window of the screen across
the memory map a pixel at a time. This section of code also contains words to synchronize
register changes with the horizontal and vertical retrace intervals. I must admit that my choice
of the synchronization methods used in SMOOTH . SCROLL doesn’t really agree with my under-
standing of how the hardware works.

Finally, since we will eventually reach the end of the memory map, we need a word
(MOVE.MAPS) to periodically copy the current memory image to the beginning of the memory
map. ;

Point and play

The fourth and final section of source code is a simplified version of our actual application.
The word 1| GRAPH adds a data point to the left side of the scrolling window. This words includes
factors to change the display’s offset and gain. To invoke the stripchart scrollet, execute the word ;

322 The Journal of Forth Applications and Research Volume 6 Number 4

PLAY, place the cutsor on the ramp function data file “TEST.DAT"” created by FAKE DATA and
let it scroll.
References

[Mac90] MacGibbon,D.R., A Three Chip Design for Analog to RS232 Data Acquisition Proceedings
of the 1990 Rochester Forth Conference, pp. 99-100, 1990.

[Dun86] Duncan, R.,Advanced MS DOS, pp. 208-220. MicroSoft Press, 1986.
[Dun88} Duncan, R., The MS DOS Encyclopedia pp. 425-426. Microsoft Press, 1988.

[Mac90] MacGibbon, D.R.,A Three Chip Design for Analog to RS232 Data Acquisition, Proccedings
of the 1990 Rochester Forth Conference, pp99-100, 1990

[Smi90] Smiley, M. FPC user routine VGA.SEQ, FORTH INTEREST GROUP, 1990., San Jose

[Wil87] Wilton, R. Programmer’s Guide to PC & PS/2 Video Systems, pp. 96,144-145. Microsoft
Press 1987.

[Wil88] Wilton,R., Pixel panning and split screens PC Tech Journal, volume 6, issue 11, Nov, 1988,
Pp62(8) ' '

[Zim90] Zimmer, T. FPC, FORTH INTEREST GROUP, 1990., San Jose

Emulation of a Stripchart Recorder. - . 323

Appendix
11930 CONSTANT 100HZ
8 CONSTANT TIMER-INT '\ IRQ 8.
2 CONSTANT NUMBYTES \ bytes per packet
VARIABLE TIMERCOUNT
2VARIABLE PREV_TIMER_VEC \ old int vector -
CREATE INPUTBUFFER NUMBYTES ALLOT
HANDLE DATAFILE \ file handle

CODE 'INT VECTOR! (seg addr int_# --)
\ store int vector

POP AX POP DX POP BX
PUSH DS MOV DS, BX MOV AH, # $25
INT $21 POP DS NEXT END-CODE

CODE INT_ VECTOR@ (int_’# -- seg addr)
\ fetch int vector

POP AX PUSH ES MOV AH, # $35
INT $21 MOV DX, ES POP ES
PUSH DX PUSH BX NEXT END-CODE
¢ TIMERSTART (count --) ~\ start timer
$34 543 PC! DUP $40 PC! FLIP $40 PC! ;
CODE TIMER
RTN \ timer int routine
PUSH AX PUSH DX

CS: INC TIMERCOUNT WORD \ increments variable
MOV DX, # $20 MOV AL, # $20 OUT DX, AL

POP DX POP AX STI IRET
END-CODE
: TIMER-ON (--) . \ reset.timer and

"PREV_TIMER VEC 2@ OR 0= IF \ initialize int vec.
TIMER-INT INT_VECTOR@ \ save previous vector
PREV_TIMER_VEC 2! ’ ‘

THEN ‘

?CS: "1 TIMER_RTN TIMER-INT INT_ VECTOR!

100HZ TIMERSTART TIMERCOUNT OFF;

\ interrupt @ 100 hz

TIMER-QFF (--) \ rTestore to DOS state
PREV_TIMER VEC 2@ OR IF ' :
PREV_TIMER VEC 2@ TIMER-INT INT_VECTOR!
0. PREV_TIMER VEC 2! $FFFE TIMERSTART
THEN ; \ old DOS timer rate
\ about 18 hz.

?TIMER (-- data flg) \ returns data from file
TIMERCOUNT @ 1 U> IF- \ if time for it
INPUTBUFFER NUMBYTES DATAFILE HREAD IF
TIMERCOUNT DECR INPUTBUFFER @ TRUE

ELSE
TRUE FALSE \ late enough, but no
THEN \ more data
ELSE .
FALSE FALSE \ too early not time yet

THEN ;

324 The Journal of Forth Applications and Research Volume 6 Number 4

\ Adapted from routines distributed or published
\ by M. Smiley, E.T. Smith and R. Wilton
DECIMAL PREFIX

CODE MODE (N --) \ set video mode
POP AX INT $10 NEXT END-CODE
: TEXT (--) \ return to normal fast text mode

3 MODE DARK FAST STATON ;

VARIABLE COLOR 11 COLOR'!

VARIABLE X1° VARIABLE X1

VARIABLE X2°' VARTABLE Y1 .
VARIABLE Y1° VARTIABLE X2

VARIABLE Y2° VARIABLE Y2

CREATE LTBL 8 ALLOT

80 CONSTANT BYTESPERROW

VARIABLE CORNER_BYTE

SA000 CONSTANT GSEG

LABEL (VSET) \ subroutine to set pixel on scrolling screen

PUSH DS _PUSH AX
PUSH BX PUSH CX

PUSH DX MOV AX, DX
MOV BX, CX MOV CL, BL

\ compute byte address of pixel AX = #irows * bytes per row
MOV DX, # BYTESPERROW MUL DX

SHR BX SHR BX \ BX = # cols * 8
SHR BX ADD BX, AX '
ADD BX, CORNER_BYTE IN \ add pos for corner
MOV DX, # GSEG MOV DS, DX

\ compute bit mask of pixel

AND CL, # 7 XOR CL, # 7

MOV AH, # 1 SHL AH, CL

\ select bit mask register of controller
MOV DX, # $3CE MOV AL, # 8

OUT DX, AX :

MOV AL, 0 [BX] MOV 0 [BX], # 0 BYTE

MOV DX, # $3C4
\ select map mask register of sequencer to select the color

CS: MOV AH, COLOR MOV AL, # 2

OUT DX, AX MOV 0 [BX], # SFF BYTE

\ restore default map mask and default bit mask

MOV AH, # SOF OouT DX, AX

MOV DX, # S3CE MOV AX, # SFFO08

OUT DX, AX POP DX

POP CX POP BX

POP AX POP DS RET END-CODE
LABEL STEEP (V)

MOV AX, LTBL 2 + SHR AX

MOV LTBL 4 + AX MOV CX, X1°'

MOV DX, Y1° MOV BX, # O

MOV AX, LTBL 2 + MOV LTBL 6 + AX

BEGIN .

CALL (VSET)

ADD DX, ST ADD BX, LTBL

Emulation of a Stripchart Recorder 325

CMP BX, LTBL 4 + > IF
SUB BX, LTBL 2 + ADD CX, DI
THEN
DEC LTBL 6 + WORD < UNTIL
RET END-CODE

LABEL EASY (V)

MOV AX, LTBL SHR AX
MOV LTBL 4 + AX MOV CX, X1°
MOV DX, Y1° MOV BX, # 0O
MOV AX, LTBL MOV LTBL 6 + AX
BEGIN ‘
CALL (VSET) !

ADD CX, DI ADD BX, LTBL 2 +
CMP BX, LTBL 4 + > IF .
SUB BX, LTBL ADD DX, ST
THEN ‘
DEC LTBL 6 + WORD < UNTIL
RET END-CODE

LABEL STORE-X (V)
MOV LTBL AX

CMP AX, LTBL 2 + JL STEEP (V)

CALL EASY (V) RET END-CODE
LABEL STORE-Y (V)

MOV LTBL 2 + AX MOV AX, X2’

SUB AX, X1’ MOV DI, # 1

JGE STORE-X (V)

MOV DI, # -1 NEG AX

JMP STORE-X (V) END-CODE
LABEL ((VLINE))

MOV AX, X1 MOV X1’ AX

MOV AX, Y1 ’ MOV Y1’ AX

MOV AX, X2 MOV X2' AX,

MOV AX, Y2 MOV Y2’ AX

SUB AX, Y1’

MoV ST, # 1 JGE STORE-Y (V)

MOV SI, # -1 NEG AX

JMP STORE-Y (V) END-CODE
CODE (VLINE) (--)

PUSH SI PUSH BP

CALL ((VLINE)) POP BP

POP SI NEXT END-CODE

\ draw line segment between 2 points
: VLINE (x1ylx2vy2 --)
Y2 ! X2 ' Y1 ! X1t (VLINE) ;

\ draw line segment from last pt. to this pt.
: VDRAW (x1y1l --)
2DUP Y1 ! X1 ! (VLINE) Y2 ! X2 ! ;

Safff CONSTANT FIRST.FRAME

$6000 CONSTANT LAST.FRAME

$5000 CONSTANT SCROLL.MEM.LENGTH
VARIABLE CORNER_BIT

326 The Journal of Forth Applications and Research Volume 6 Number 4

: CRTC! (value register --)
$3D4 PC! $3D5 PC! ;.
: CRTC@ (register -- value)
$3D4 PC! $3D5 PC@ ;
: SPLITLINE! (line --) \ line # ranges from 0 to 479
2/ 2% : \ force line # even

DUP $FF AND $18 CRTC!

DUP $100 AND $10 /

7 CRTC@ $10 $FF XOR AND OR
7 CRTC! $200 AND 8 /

9 CRTC®@ $40 $FF XOR AND O
9 CRTC! ; ‘

CODE CORNER_BYTE! (n --)
\ n ranges from 6000H to AFFFH

CLI MOV DX, # $3d4
MOV AX, # Sod OUT DX, AL
INC DX POP AX
MOV CORNER_BYTE AX OUT DX, AL
DEC DX MOV Al, # Soc
OuUT DX, AL INC DX
MOV AL, AH OUT DX, AL
STI \
NEXT END-CODE
CODE CORNER BIT! (N --) \ n ranges from 0 to 7-
CLI MOV AX, # $33
MOV DX, # $3C0O OouUT DX, AL
POP AX OUT DX, AL
STI MOV CORNER BIT AX
NEXT : END-CODE
CODE WAITFORH (--) \ wait for horizontal synch
BEGIN

MOV DX, # $3DA 1IN AL, DX
AND AL, # 1 0 UNTIL
NEXT END-CODE

CODE WAITFORNOV (--) \ wait for not vertical synch
BEGIN
MOV DX, # $3DA 1IN AL, DX
TEST AL, # 8 0= UNTIL
CLI
NEXT END-CODE

CODE WAITFORV (--) \ wait for vertical synch
BEGIN :
MOV DX, # $3DA 1IN AL, DX
TEST AL, # 8 0 UNTIL
NEXT END-CODE .

\ allow scrolling on half screen only
CODE ENABLEHALFSCROLL (--))

MOV AX, # $1007 MOV BL, # $10

\ read paette reg 16

INT $10 OR BH, # $20

MOV AX, # $1000 MOV BL, # $10

\ set bit 5 of palette

Emulation of a Stripchart Recorder : : 327

INT $10 NEXT END-CODE \ register 16

: INITSCREEN (--)
STATOFF SLOW 18 MODE
CORNER_BYTE OFF
016311 VLINE 7 X2 ! 255%Y2!
255 SPLITLINE! ENABLEHALFSCROLL
FIRST.FRAME CORNER BYTE! 7 CORNER_BIT!";

: MOVE.MAP (--)
GSEGLAST.FRAME GSEG FIRST.FRAME SCROLL.MEM.LENGTH

CMOVEL ;

: MOVE.MAPS (--)
" $105 $3CE P! \ set mode to read X write Y
$802 $3C4 P! MOVE.MAP
\ move 4 bitplanes for 16 colors

$402 $3C4 P! MOVE.MAP

$202 $3C4 P! MOVE.MAP

$102 $3C4 P! MOVE.MAP :

$005 $3CE P! \ restore mode to read Z write

: SMOOTH.SCROLL (--)
CORNER_BIT @0 = IF
CORNER" BYTE @ LAST.FRAME = 1IF
MOVE.MAPS FIRST.FRAME CORNER_BYTE!
THEN ‘ '
256 0 DO
0 GSEG CORNER_BYTE @ BYTESPERROW I * 1- + C!L -
LOOP
CORNER BYTE @ 1- WAITFORNOV- CORNER BYTE!
WAITFORV 7 CORNER_BIT!
ELSE
CORNER_BIT @ 1- WAITFORH CORNER BIT!
THEN ;
\ stripchart smooth scrolling demonstration
FLOAD TIMERASC FLOAD VLINE FLOAD SCROLL

VARIABLE OFF-SET VARIABLE MULT 1 MULT !
VARIABLE DIV 4 DIV ! VARIABLE FINISHED
!GRAPH (n --) \ add data pt to the scrolling graph
OFF-SET @ + MULT @ DIV@ */ \ adjust gain & offset
255 MIN 1 MAX \ ¢clip to fit on screen
224 + 479 SWAP - \ adjust to screen coords
CORNER_BIT @ SWAP VDRAW \ draw new segment
CORNER BIT @O0 = if \ if last bitwise scroll
8 X2 ! \ adjust last pt for
THEN \ byte scroll
SMOQOTH.SCROLL ;
: OPENSTOREDFILE (-- flg) \ select file with Tom Zimmers
GETFILE 0= IF
FALSE EXIT \ point and pick utility
THEN

DATAFILE $HANDLE

DATAFILE HOPEN 0= NOT IF
." FILE DOESN'T EXIST " KEY DROP FALSE EXIT

THEN -

TRUE ;

328 ‘ The Journal of Forth Applications and Research Volume 6 Number 4

: PLAY (--) \ play back a recorded data file
OPENSTOREDFILE 0= IF EXIT THEN
INITSCREEN

20 2 AT ." THIS HALF OF SCREEN IS FOR THE MENU "
FINISHED OFF TIMER-ON TIMERCOUNT OFF
BEGIN
?TIMER IF
!GRAPH
ELSE
IF
FINISHED ON
THEN
THEN
KEY? IF
KEY CASE
$1B (ESC) OF FINISHED ON' ENDOF
DROP i
ENDCASE
THEN .
FINISHED @ UNTIL
TEXT TIMER-OFF DATAFILE HCLOSE DROP ;

: FAKE DATA \ create a data file with a ramp function
" TEST.DAT" "S DATAFILE $HANDLE
DATAFILE HCREATE IF ." FILE CREATION ERROR " THEN

5 0 DO 500 0 DO .
- I INPUTBUFFER ! INPUTBUFFER 2 DATAFILE HWRITE DROP

LOOP LOOP
DATAFILE HCLOSE DROP ; -

FAKE DATA \ make a fake data file

